Lead toxicity regulation via protein degradation and tetrapyrrole biosynthesis pathways in Brassica species : A comparative quantitative analysis of proteomic study

Copyright © 2024 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 213(2024) vom: 01. Juli, Seite 108867
1. Verfasser: Shehzad, Junaid (VerfasserIn)
Weitere Verfasser: Emili, Andrew, Kwan, Julian, Yang, Bingxian, Bovand, Fatemeh, Hasan, Murtaza, Mustafa, Ghazala
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Comparative Study B. juncea B. napus Lead Proteomics Susceptible Tolerant Toxicity 2P299V784P mehr... Plant Proteins Tetrapyrroles
Beschreibung
Zusammenfassung:Copyright © 2024 Elsevier Masson SAS. All rights reserved.
Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway
Beschreibung:Date Completed 05.07.2024
Date Revised 05.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.108867