|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM374221030 |
003 |
DE-627 |
005 |
20240829232836.0 |
007 |
cr uuu---uuuuu |
008 |
240627s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202403111
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1516.xml
|
035 |
|
|
|a (DE-627)NLM374221030
|
035 |
|
|
|a (NLM)38934213
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hu, Rongjian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a High-Fidelity Bioelectrodes with Bidirectional Ion-Electron Transduction Capability by Integrating Multiple Charge-Transfer Processes
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a conducting polymer
|
650 |
|
4 |
|a electron–ion transduction
|
650 |
|
4 |
|a impedance
|
650 |
|
4 |
|a physiological signal
|
650 |
|
4 |
|a silver chloride
|
650 |
|
4 |
|a silver nanowires
|
650 |
|
4 |
|a strain insensitivity
|
700 |
1 |
|
|a Yao, Bowen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Geng, Yuhao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Shuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Mengfan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhong, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Fuyao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Haojie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jingyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ge, Jiahao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Ran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Tong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Jiajie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Jianhua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fu, Jiajun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 35 vom: 23. Aug., Seite e2403111
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:35
|g day:23
|g month:08
|g pages:e2403111
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202403111
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 35
|b 23
|c 08
|h e2403111
|