The generalized odd log-logistic-G regression with interval-censored survival data

© 2023 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 9 vom: 26., Seite 1642-1663
1. Verfasser: Vigas, Valdemiro P (VerfasserIn)
Weitere Verfasser: Ortega, Edwin M M, Suzuki, Adriano K, Cordeiro, Gauss M, Dos Santos Junior, Paulo C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62N01 Bayesian inference generalized odd log-logistic family interval-censored data regression model residual analysis
LEADER 01000caa a22002652 4500
001 NLM37421039X
003 DE-627
005 20240714233034.0
007 cr uuu---uuuuu
008 240627s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2023.2230533  |2 doi 
028 5 2 |a pubmed24n1470.xml 
035 |a (DE-627)NLM37421039X 
035 |a (NLM)38933143 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vigas, Valdemiro P  |e verfasserin  |4 aut 
245 1 4 |a The generalized odd log-logistic-G regression with interval-censored survival data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.07.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The article proposes a new regression based on the generalized odd log-logistic family for interval-censored data. The survival times are not observed for this type of data, and the event of interest occurs at some random interval. This family can be used in interval modeling since it generalizes some popular lifetime distributions in addition to its ability to present various forms of the risk function. The estimation of the parameters is addressed by the classical and Bayesian methods. We examine the behavior of the estimates for some sample sizes and censorship percentages. Selection criteria, likelihood ratio tests, residual analysis, and graphical techniques assess the goodness of fit of the fitted models. The usefulness of the proposed models is red shown by means of two real data sets 
650 4 |a Journal Article 
650 4 |a 62N01 
650 4 |a Bayesian inference 
650 4 |a generalized odd log-logistic family 
650 4 |a interval-censored data 
650 4 |a regression model 
650 4 |a residual analysis 
700 1 |a Ortega, Edwin M M  |e verfasserin  |4 aut 
700 1 |a Suzuki, Adriano K  |e verfasserin  |4 aut 
700 1 |a Cordeiro, Gauss M  |e verfasserin  |4 aut 
700 1 |a Dos Santos Junior, Paulo C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 9 vom: 26., Seite 1642-1663  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:9  |g day:26  |g pages:1642-1663 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2023.2230533  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 9  |b 26  |h 1642-1663