Modelling and monitoring social network change based on exponential random graph models

© 2023 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 51(2024), 9 vom: 21., Seite 1621-1641
Auteur principal: Cai, Yantao (Auteur)
Autres auteurs: Liu, Liu, Li, Zhonghua
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Exponentially random graph model online monitoring social network split likelihood ratio test statistical process control
LEADER 01000caa a22002652c 4500
001 NLM374210314
003 DE-627
005 20250306084112.0
007 cr uuu---uuuuu
008 240627s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2023.2230530  |2 doi 
028 5 2 |a pubmed25n1246.xml 
035 |a (DE-627)NLM374210314 
035 |a (NLM)38933140 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cai, Yantao  |e verfasserin  |4 aut 
245 1 0 |a Modelling and monitoring social network change based on exponential random graph models 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.07.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a This paper aims to detect anomalous changes in social network structure in real time and to offer early warnings by phase II monitoring social networks. First, the exponential random graph model is used to model social networks. Then, a test and online monitoring technique of the exponential random graph model is developed based on the split likelihood-ratio test after determining the model and its parameters for a specific data set. This proposed approach uses pseudo-maximum likelihood estimation and likelihood ratio to construct the test statistics, avoiding the several steps of discovering Monte Carlo Markov Chain maximum likelihood estimation through an iterative method. A bisection algorithm for the control limit is given. Simulations on three data sets Flobusiness, Kapferer and Faux.mesa.high are presented to study the performance of the procedure. Different change points and shift sizes are compared to see how they affect the average run length. A real application example on the MIT reality mining social proximity network is used to illustrate the proposed modelling and online monitoring methods 
650 4 |a Journal Article 
650 4 |a Exponentially random graph model 
650 4 |a online monitoring 
650 4 |a social network 
650 4 |a split likelihood ratio test 
650 4 |a statistical process control 
700 1 |a Liu, Liu  |e verfasserin  |4 aut 
700 1 |a Li, Zhonghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 9 vom: 21., Seite 1621-1641  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:51  |g year:2024  |g number:9  |g day:21  |g pages:1621-1641 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2023.2230530  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 9  |b 21  |h 1621-1641