Predicting redox potentials by graph-based machine learning methods

© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 28 vom: 30. Okt., Seite 2383-2396
1. Verfasser: Jia, Linlin (VerfasserIn)
Weitere Verfasser: Brémond, Éric, Zaida, Larissa, Gaüzère, Benoit, Tognetti, Vincent, Joubert, Laurent
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article ORedOx159 database Redox potential prediction density functional theory graph‐based machine learning methods
LEADER 01000caa a22002652c 4500
001 NLM374115192
003 DE-627
005 20250306082927.0
007 cr uuu---uuuuu
008 240627s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27380  |2 doi 
028 5 2 |a pubmed25n1246.xml 
035 |a (DE-627)NLM374115192 
035 |a (NLM)38923574 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Linlin  |e verfasserin  |4 aut 
245 1 0 |a Predicting redox potentials by graph-based machine learning methods 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a The evaluation of oxidation and reduction potentials is a pivotal task in various chemical fields. However, their accurate prediction by theoretical computations, which is a complementary task and sometimes the only alternative to experimental measurement, may be often resource-intensive and time-consuming. This paper addresses this challenge through the application of machine learning techniques, with a particular focus on graph-based methods (such as graph edit distances, graph kernels, and graph neural networks) that are reviewed to enlighten their deep links with theoretical chemistry. To this aim, we establish the ORedOx159 database, a comprehensive, homogeneous (with reference values stemming from density functional theory calculations), and reliable resource containing 318 one-electron reduction and oxidation reactions and featuring 159 large organic compounds. Subsequently, we provide an instructive overview of the good practice in machine learning and of commonly utilized machine learning models. We then assess their predictive performances on the ORedOx159 dataset through extensive analyses. Our simulations using descriptors that are computed in an almost instantaneous way result in a notable improvement in prediction accuracy, with mean absolute error (MAE) values equal to 5.6 kcal mol - 1 for reduction and 7.2 kcal mol - 1 for oxidation potentials, which paves a way toward efficient in silico design of new electrochemical systems 
650 4 |a Journal Article 
650 4 |a ORedOx159 database 
650 4 |a Redox potential prediction 
650 4 |a density functional theory 
650 4 |a graph‐based machine learning methods 
700 1 |a Brémond, Éric  |e verfasserin  |4 aut 
700 1 |a Zaida, Larissa  |e verfasserin  |4 aut 
700 1 |a Gaüzère, Benoit  |e verfasserin  |4 aut 
700 1 |a Tognetti, Vincent  |e verfasserin  |4 aut 
700 1 |a Joubert, Laurent  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 28 vom: 30. Okt., Seite 2383-2396  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:45  |g year:2024  |g number:28  |g day:30  |g month:10  |g pages:2383-2396 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27380  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 28  |b 30  |c 10  |h 2383-2396