Bilinear Models of Parts and Appearances in Generative Adversarial Networks

Recent advances in the understanding of Generative Adversarial Networks (GANs) have led to remarkable progress in visual editing and synthesis tasks, capitalizing on the rich semantics that are embedded in the latent spaces of pre-trained GANs. However, existing methods are often tailored to specifi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 01. Nov., Seite 8568-8579
1. Verfasser: Oldfield, James (VerfasserIn)
Weitere Verfasser: Tzelepis, Christos, Panagakis, Yannis, Nicolaou, Mihalis A, Patras, Ioannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM374113815
003 DE-627
005 20241108232240.0
007 cr uuu---uuuuu
008 240627s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3415506  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM374113815 
035 |a (NLM)38923485 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oldfield, James  |e verfasserin  |4 aut 
245 1 0 |a Bilinear Models of Parts and Appearances in Generative Adversarial Networks 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent advances in the understanding of Generative Adversarial Networks (GANs) have led to remarkable progress in visual editing and synthesis tasks, capitalizing on the rich semantics that are embedded in the latent spaces of pre-trained GANs. However, existing methods are often tailored to specific GAN architectures and are limited to either discovering global semantic directions that do not facilitate localized control, or require some form of supervision through manually provided regions or segmentation masks. In this light, we present an architecture-agnostic approach that jointly discovers factors representing spatial parts and their appearances in an entirely unsupervised fashion. These factors are obtained by applying a semi-nonnegative tensor factorization on the feature maps, which in turn enables context-aware local image editing with pixel-level control. In addition, we show that the discovered appearance factors correspond to saliency maps that localize concepts of interest, without using any labels. Experiments on a wide range of GAN architectures and datasets show that, in comparison to the state of the art, our method is far more efficient in terms of training time and, most importantly, provides much more accurate localized control 
650 4 |a Journal Article 
700 1 |a Tzelepis, Christos  |e verfasserin  |4 aut 
700 1 |a Panagakis, Yannis  |e verfasserin  |4 aut 
700 1 |a Nicolaou, Mihalis A  |e verfasserin  |4 aut 
700 1 |a Patras, Ioannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 01. Nov., Seite 8568-8579  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:01  |g month:11  |g pages:8568-8579 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3415506  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 01  |c 11  |h 8568-8579