|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM374109435 |
003 |
DE-627 |
005 |
20240829232829.0 |
007 |
cr uuu---uuuuu |
008 |
240627s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202406807
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1516.xml
|
035 |
|
|
|a (DE-627)NLM374109435
|
035 |
|
|
|a (NLM)38923045
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cheng, Lei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Toward Functionality and Deactivation of Metal-Single-Atom in Heterogeneous Photocatalysts
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Single-atom heterogeneous catalysts (SAHCs) provide an enticing platform for understanding catalyst structure-property-performance relationships. The 100% atom utilization and adjustable local coordination configurations make it easy to probe reaction mechanisms at the atomic level. However, the progressive deactivation of metal-single-atom (MSA) with high surface energy leads to frequent limitations on their commercial viability. This review focuses on the atomistic-sensitive reactivity and atomistic-progressive deactivation of MSA to provide a unifying framework for specific functionality and potential deactivation drivers of MSA, thereby bridging function, purpose-modification structure-performance insights with the atomistic-progressive deactivation for sustainable structure-property-performance accessibility. The dominant functionalization of atomically precise MSA acting on properties and reactivity encompassing precise photocatalytic reactions is first systematically explored. Afterward, a detailed analysis of various deactivation modes of MSA and strategies to enhance their durability is presented, providing valuable insights into the design of SAHCs with deactivation-resistant stability. Finally, the remaining challenges and future perspectives of SAHCs toward industrialization, anticipating shedding some light on the next stage of atom-economic chemical/energy transformations are presented
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a deactivation
|
650 |
|
4 |
|a functionality
|
650 |
|
4 |
|a single‐atom heterogeneous catalysts
|
650 |
|
4 |
|a stability
|
650 |
|
4 |
|a structure–property–performance
|
700 |
1 |
|
|a Wu, Qiaolin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Hanjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Yawen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiang, Quanjun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 35 vom: 27. Aug., Seite e2406807
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:35
|g day:27
|g month:08
|g pages:e2406807
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202406807
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 35
|b 27
|c 08
|h e2406807
|