Exploring the influence of metal cations on individual hydrogen bonds in Watson-Crick guanine-cytosine DNA base pair : An interacting quantum atoms analysis

© 2024 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 45(2024), 28 vom: 30. Okt., Seite 2397-2408
Auteur principal: Pakzad, F (Auteur)
Autres auteurs: Eskandari, K
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article DNA IQA NAdO QTAIM cytosine guanine hydrogen bond Guanine 5Z93L87A1R plus... Cytosine 8J337D1HZY 9007-49-2 Cations Metals
LEADER 01000caa a22002652c 4500
001 NLM374108552
003 DE-627
005 20250306082840.0
007 cr uuu---uuuuu
008 240627s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27441  |2 doi 
028 5 2 |a pubmed25n1246.xml 
035 |a (DE-627)NLM374108552 
035 |a (NLM)38922952 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pakzad, F  |e verfasserin  |4 aut 
245 1 0 |a Exploring the influence of metal cations on individual hydrogen bonds in Watson-Crick guanine-cytosine DNA base pair  |b An interacting quantum atoms analysis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.09.2024 
500 |a Date Revised 02.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 Wiley Periodicals LLC. 
520 |a This study delves into the nature of individual hydrogen bonds and the relationship between metal cations and hydrogen bonding in the Watson-Crick guanine-cytosine (GC) base pair and its alkali and alkaline earth cation-containing complexes (Mn+-GC). The findings reveal how metal cations affect the nature and strength of individual hydrogen bonds. The study employs interacting quantum atoms (IQA) analysis to comprehensively understand three individual hydrogen bonds within the GC base pair and its cationic derivatives. These analyses unveil the nature and strength of hydrogen bonds and serve as a valuable reference for exploring the impact of cations (and other factors) on each hydrogen bond. All the H ⋯ D interactions (H is hydrogen and D is oxygen or nitrogen) in the GC base pair are primarily electrostatic in nature, with the charge transfer component playing a substantial role. Introducing a metal cation perturbs all H ⋯ D interatomic interactions in the system, weakening the nearest hydrogen bond to the cation (indicated by a) and reinforcing the other (b and c) interactions. Notably, the interaction a, the strongest H ⋯ D interaction in the GC base pair, becomes the weakest in the Mn+-GC complexes. A broader perspective on the stability of GC and Mn+-GC complexes is provided through interacting quantum fragments (IQF) analysis. This approach considers all pairwise interactions between fragments and intra-fragment components, offering a complete view of the factors that stabilize and destabilize GC and Mn+-GC complexes. The IQF analysis underscores the importance of electron sharing, with the dominant contribution arising from the inter-fragment exchange-correlation term, in shaping and sustaining GC and Mn+-GC complexes. From this point of view, alkaline and alkaline earth cations have distinct effects, with alkaline cations generally weakening inter-fragment interactions and alkaline earth cations strengthening them. In addition, IQA and IQF calculations demonstrate that the hydration of cations led to small changes in the hydrogen bonding network. Finally, the IQA interatomic energies associated with the hydrogen bonds and also inter-fragment interaction energies provide robust indicators for characterizing hydrogen bonds and complex stability, showing a strong correlation with total interaction energies 
650 4 |a Journal Article 
650 4 |a DNA 
650 4 |a IQA 
650 4 |a NAdO 
650 4 |a QTAIM 
650 4 |a cytosine 
650 4 |a guanine 
650 4 |a hydrogen bond 
650 7 |a Guanine  |2 NLM 
650 7 |a 5Z93L87A1R  |2 NLM 
650 7 |a Cytosine  |2 NLM 
650 7 |a 8J337D1HZY  |2 NLM 
650 7 |a DNA  |2 NLM 
650 7 |a 9007-49-2  |2 NLM 
650 7 |a Cations  |2 NLM 
650 7 |a Metals  |2 NLM 
700 1 |a Eskandari, K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 28 vom: 30. Okt., Seite 2397-2408  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:45  |g year:2024  |g number:28  |g day:30  |g month:10  |g pages:2397-2408 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27441  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 28  |b 30  |c 10  |h 2397-2408