Computing Smooth and Integrable Cross Fields via Iterative Singularity Adjustment

We propose a new method for computing smooth and integrable cross fields on 2D and 3D surfaces. We first compute smooth cross fields by minimizing the Dirichlet energy. Unlike the existing optimization based approaches, our method determines the singularity configuration, i.e., the number of singula...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 25. Juni
1. Verfasser: Ma, Long (VerfasserIn)
Weitere Verfasser: He, Ying, Zheng, Jianmin, Zhou, Yuanfeng, Xin, Shiqing, Zhang, Caiming, Wang, Wenping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM374051925
003 DE-627
005 20240701232428.0
007 cr uuu---uuuuu
008 240626s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3418892  |2 doi 
028 5 2 |a pubmed24n1457.xml 
035 |a (DE-627)NLM374051925 
035 |a (NLM)38917294 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Long  |e verfasserin  |4 aut 
245 1 0 |a Computing Smooth and Integrable Cross Fields via Iterative Singularity Adjustment 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We propose a new method for computing smooth and integrable cross fields on 2D and 3D surfaces. We first compute smooth cross fields by minimizing the Dirichlet energy. Unlike the existing optimization based approaches, our method determines the singularity configuration, i.e., the number of singularities, their locations and indices, via iteratively adjusting singularities. The singularities can move, merge and split, as like charges repel and unlike charges attract. Once all singularities stop moving, we obtain a cross field with (locally) lowest Dirichlet energy. In simply connected domains, such a cross field is guaranteed to be integrable. However, this property does not hold in multiply connected domains. To make a smooth cross field integrable, we construct a vector field c, which characterizes how far the cross field is away from a curl-free field. Then we optimize the locations of singularities by moving them along the field lines of c. Our method is fundamentally different from the existing integer programming-based approaches, since it does not require any special numerical solver. It is fully automatic and also has a parameter to control the number of singularities. Our method is well suited for smooth models in which exact boundary alignment and sparse hard directional constraints are desired, and can guide seamless conformal parameterization and T-junction-free quadrangulation. We will make the source code publicly available 
650 4 |a Journal Article 
700 1 |a He, Ying  |e verfasserin  |4 aut 
700 1 |a Zheng, Jianmin  |e verfasserin  |4 aut 
700 1 |a Zhou, Yuanfeng  |e verfasserin  |4 aut 
700 1 |a Xin, Shiqing  |e verfasserin  |4 aut 
700 1 |a Zhang, Caiming  |e verfasserin  |4 aut 
700 1 |a Wang, Wenping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 25. Juni  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:25  |g month:06 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3418892  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 25  |c 06