Federated Learning for Generalization, Robustness, Fairness : A Survey and Benchmark

Federated learning has emerged as a promising paradigm for privacy-preserving collaboration among different parties. Recently, with the popularity of federated learning, an influx of approaches have delivered towards different realistic challenges. In this survey, we provide a systematic overview of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 25. Dez., Seite 9387-9406
1. Verfasser: Huang, Wenke (VerfasserIn)
Weitere Verfasser: Ye, Mang, Shi, Zekun, Wan, Guancheng, Li, He, Du, Bo, Yang, Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM374051879
003 DE-627
005 20250306082147.0
007 cr uuu---uuuuu
008 240626s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3418862  |2 doi 
028 5 2 |a pubmed25n1246.xml 
035 |a (DE-627)NLM374051879 
035 |a (NLM)38917282 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Wenke  |e verfasserin  |4 aut 
245 1 0 |a Federated Learning for Generalization, Robustness, Fairness  |b A Survey and Benchmark 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Federated learning has emerged as a promising paradigm for privacy-preserving collaboration among different parties. Recently, with the popularity of federated learning, an influx of approaches have delivered towards different realistic challenges. In this survey, we provide a systematic overview of the important and recent developments of research on federated learning. First, we introduce the study history and terminology definition of this area. Then, we comprehensively review three basic lines of research: generalization, robustness, and fairness, by introducing their respective background concepts, task settings, and main challenges. We also offer a detailed overview of representative literature on both methods and datasets. We further benchmark the reviewed methods on several well-known datasets. Finally, we point out several open issues in this field and suggest opportunities for further research 
650 4 |a Journal Article 
700 1 |a Ye, Mang  |e verfasserin  |4 aut 
700 1 |a Shi, Zekun  |e verfasserin  |4 aut 
700 1 |a Wan, Guancheng  |e verfasserin  |4 aut 
700 1 |a Li, He  |e verfasserin  |4 aut 
700 1 |a Du, Bo  |e verfasserin  |4 aut 
700 1 |a Yang, Qiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 25. Dez., Seite 9387-9406  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:25  |g month:12  |g pages:9387-9406 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3418862  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 25  |c 12  |h 9387-9406