Revitalizing Convolutional Network for Image Restoration

Image restoration aims to reconstruct a high-quality image from its corrupted version, playing essential roles in many scenarios. Recent years have witnessed a paradigm shift in image restoration from convolutional neural networks (CNNs) to Transformer-based models due to their powerful ability to m...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 25. Dez., Seite 9423-9438
Auteur principal: Cui, Yuning (Auteur)
Autres auteurs: Ren, Wenqi, Cao, Xiaochun, Knoll, Alois
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM374051828
003 DE-627
005 20250306082147.0
007 cr uuu---uuuuu
008 240626s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3419007  |2 doi 
028 5 2 |a pubmed25n1246.xml 
035 |a (DE-627)NLM374051828 
035 |a (NLM)38917284 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cui, Yuning  |e verfasserin  |4 aut 
245 1 0 |a Revitalizing Convolutional Network for Image Restoration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image restoration aims to reconstruct a high-quality image from its corrupted version, playing essential roles in many scenarios. Recent years have witnessed a paradigm shift in image restoration from convolutional neural networks (CNNs) to Transformer-based models due to their powerful ability to model long-range pixel interactions. In this paper, we explore the potential of CNNs for image restoration and show that the proposed simple convolutional network architecture, termed ConvIR, can perform on par with or better than the Transformer counterparts. By re-examing the characteristics of advanced image restoration algorithms, we discover several key factors leading to the performance improvement of restoration models. This motivates us to develop a novel network for image restoration based on cheap convolution operators. Comprehensive experiments demonstrate that our ConvIR delivers state-of-the-art performance with low computation complexity among 20 benchmark datasets on five representative image restoration tasks, including image dehazing, image motion/defocus deblurring, image deraining, and image desnowing 
650 4 |a Journal Article 
700 1 |a Ren, Wenqi  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Knoll, Alois  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 25. Dez., Seite 9423-9438  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:25  |g month:12  |g pages:9423-9438 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3419007  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 25  |c 12  |h 9423-9438