PIG : Prompt Images Guidance for Night-Time Scene Parsing

Night-time scene parsing aims to extract pixel-level semantic information in night images, aiding downstream tasks in understanding scene object distribution. Due to limited labeled night image datasets, unsupervised domain adaptation (UDA) has become the predominant method for studying night scenes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 24., Seite 3921-3934
1. Verfasser: Xie, Zhifeng (VerfasserIn)
Weitere Verfasser: Qiu, Rui, Wang, Sen, Tan, Xin, Xie, Yuan, Ma, Lizhuang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM374014582
003 DE-627
005 20240701232418.0
007 cr uuu---uuuuu
008 240625s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3415963  |2 doi 
028 5 2 |a pubmed24n1457.xml 
035 |a (DE-627)NLM374014582 
035 |a (NLM)38913509 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Zhifeng  |e verfasserin  |4 aut 
245 1 0 |a PIG  |b Prompt Images Guidance for Night-Time Scene Parsing 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Night-time scene parsing aims to extract pixel-level semantic information in night images, aiding downstream tasks in understanding scene object distribution. Due to limited labeled night image datasets, unsupervised domain adaptation (UDA) has become the predominant method for studying night scenes. UDA typically relies on paired day-night image pairs to guide adaptation, but this approach hampers dataset construction and restricts generalization across night scenes in different datasets. Moreover, UDA, focusing on network architecture and training strategies, faces difficulties in handling classes with few domain similarities. In this paper, we leverage Prompt Images Guidance (PIG) to enhance UDA with supplementary night knowledge. We propose a Night-Focused Network (NFNet) to learn night-specific features from both target domain images and prompt images. To generate high-quality pseudo-labels, we propose Pseudo-label Fusion via Domain Similarity Guidance (FDSG). Classes with fewer domain similarities are predicted by NFNet, which excels in parsing night features, while classes with more domain similarities are predicted by UDA, which has rich labeled semantics. Additionally, we propose two data augmentation strategies: the Prompt Mixture Strategy (PMS) and the Alternate Mask Strategy (AMS), aimed at mitigating the overfitting of the NFNet to a few prompt images. We conduct extensive experiments on four night-time datasets: NightCity, NightCity+, Dark Zurich, and ACDC. The results indicate that utilizing PIG can enhance the parsing accuracy of UDA. The code is available at https://github.com/qiurui4shu/PIG 
650 4 |a Journal Article 
700 1 |a Qiu, Rui  |e verfasserin  |4 aut 
700 1 |a Wang, Sen  |e verfasserin  |4 aut 
700 1 |a Tan, Xin  |e verfasserin  |4 aut 
700 1 |a Xie, Yuan  |e verfasserin  |4 aut 
700 1 |a Ma, Lizhuang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 24., Seite 3921-3934  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:24  |g pages:3921-3934 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3415963  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 24  |h 3921-3934