|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM374014582 |
003 |
DE-627 |
005 |
20240701232418.0 |
007 |
cr uuu---uuuuu |
008 |
240625s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2024.3415963
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1457.xml
|
035 |
|
|
|a (DE-627)NLM374014582
|
035 |
|
|
|a (NLM)38913509
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xie, Zhifeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a PIG
|b Prompt Images Guidance for Night-Time Scene Parsing
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Night-time scene parsing aims to extract pixel-level semantic information in night images, aiding downstream tasks in understanding scene object distribution. Due to limited labeled night image datasets, unsupervised domain adaptation (UDA) has become the predominant method for studying night scenes. UDA typically relies on paired day-night image pairs to guide adaptation, but this approach hampers dataset construction and restricts generalization across night scenes in different datasets. Moreover, UDA, focusing on network architecture and training strategies, faces difficulties in handling classes with few domain similarities. In this paper, we leverage Prompt Images Guidance (PIG) to enhance UDA with supplementary night knowledge. We propose a Night-Focused Network (NFNet) to learn night-specific features from both target domain images and prompt images. To generate high-quality pseudo-labels, we propose Pseudo-label Fusion via Domain Similarity Guidance (FDSG). Classes with fewer domain similarities are predicted by NFNet, which excels in parsing night features, while classes with more domain similarities are predicted by UDA, which has rich labeled semantics. Additionally, we propose two data augmentation strategies: the Prompt Mixture Strategy (PMS) and the Alternate Mask Strategy (AMS), aimed at mitigating the overfitting of the NFNet to a few prompt images. We conduct extensive experiments on four night-time datasets: NightCity, NightCity+, Dark Zurich, and ACDC. The results indicate that utilizing PIG can enhance the parsing accuracy of UDA. The code is available at https://github.com/qiurui4shu/PIG
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Qiu, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Sen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tan, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Yuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Lizhuang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 33(2024) vom: 24., Seite 3921-3934
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2024
|g day:24
|g pages:3921-3934
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2024.3415963
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2024
|b 24
|h 3921-3934
|