|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM374014558 |
003 |
DE-627 |
005 |
20240701232418.0 |
007 |
cr uuu---uuuuu |
008 |
240625s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2024.3416065
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1457.xml
|
035 |
|
|
|a (DE-627)NLM374014558
|
035 |
|
|
|a (NLM)38913511
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Zhenyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a BinsFormer
|b Revisiting Adaptive Bins for Monocular Depth Estimation
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Monocular depth estimation (MDE) is a fundamental task in computer vision and has drawn increasing attention. Recently, some methods reformulate it as a classification-regression task to boost the model performance, where continuous depth is estimated via a linear combination of predicted probability distributions and discrete bins. In this paper, we present a novel framework called BinsFormer, tailored for the classification-regression-based depth estimation. It mainly focuses on two crucial components in the specific task: 1) proper generation of adaptive bins; and 2) sufficient interaction between probability distribution and bins predictions. To specify, we employ a Transformer decoder to generate bins, novelly viewing it as a direct set-to-set prediction problem. We further integrate a multi-scale decoder structure to achieve a comprehensive understanding of spatial geometry information and estimate depth maps in a coarse-to-fine manner. Moreover, an extra scene understanding query is proposed to improve the estimation accuracy, which turns out that models can implicitly learn useful information from the auxiliary environment classification task. Extensive experiments on the KITTI, NYU, and SUN RGB-D datasets demonstrate that BinsFormer surpasses state-of-the-art MDE methods with prominent margins. Code and pretrained models are made publicly available at https://github.com/zhyever/ Monocular-Depth-Estimation-Toolbox/tree/main/configs/ binsformer
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Wang, Xuyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xianming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Junjun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 33(2024) vom: 24., Seite 3964-3976
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2024
|g day:24
|g pages:3964-3976
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2024.3416065
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2024
|b 24
|h 3964-3976
|