BinsFormer : Revisiting Adaptive Bins for Monocular Depth Estimation

Monocular depth estimation (MDE) is a fundamental task in computer vision and has drawn increasing attention. Recently, some methods reformulate it as a classification-regression task to boost the model performance, where continuous depth is estimated via a linear combination of predicted probabilit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 24., Seite 3964-3976
1. Verfasser: Li, Zhenyu (VerfasserIn)
Weitere Verfasser: Wang, Xuyang, Liu, Xianming, Jiang, Junjun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM374014558
003 DE-627
005 20240701232418.0
007 cr uuu---uuuuu
008 240625s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3416065  |2 doi 
028 5 2 |a pubmed24n1457.xml 
035 |a (DE-627)NLM374014558 
035 |a (NLM)38913511 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhenyu  |e verfasserin  |4 aut 
245 1 0 |a BinsFormer  |b Revisiting Adaptive Bins for Monocular Depth Estimation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Monocular depth estimation (MDE) is a fundamental task in computer vision and has drawn increasing attention. Recently, some methods reformulate it as a classification-regression task to boost the model performance, where continuous depth is estimated via a linear combination of predicted probability distributions and discrete bins. In this paper, we present a novel framework called BinsFormer, tailored for the classification-regression-based depth estimation. It mainly focuses on two crucial components in the specific task: 1) proper generation of adaptive bins; and 2) sufficient interaction between probability distribution and bins predictions. To specify, we employ a Transformer decoder to generate bins, novelly viewing it as a direct set-to-set prediction problem. We further integrate a multi-scale decoder structure to achieve a comprehensive understanding of spatial geometry information and estimate depth maps in a coarse-to-fine manner. Moreover, an extra scene understanding query is proposed to improve the estimation accuracy, which turns out that models can implicitly learn useful information from the auxiliary environment classification task. Extensive experiments on the KITTI, NYU, and SUN RGB-D datasets demonstrate that BinsFormer surpasses state-of-the-art MDE methods with prominent margins. Code and pretrained models are made publicly available at https://github.com/zhyever/ Monocular-Depth-Estimation-Toolbox/tree/main/configs/ binsformer 
650 4 |a Journal Article 
700 1 |a Wang, Xuyang  |e verfasserin  |4 aut 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 24., Seite 3964-3976  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:24  |g pages:3964-3976 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3416065  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 24  |h 3964-3976