|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM373963173 |
003 |
DE-627 |
005 |
20240706232322.0 |
007 |
cr uuu---uuuuu |
008 |
240623s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.plaphy.2024.108826
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1462.xml
|
035 |
|
|
|a (DE-627)NLM373963173
|
035 |
|
|
|a (NLM)38908351
|
035 |
|
|
|a (PII)S0981-9428(24)00494-7
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Zhilong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multi-walled carbon nanotubes affect yield, antioxidant response, and rhizosphere microbial community of scented rice under combined cadmium-lead (Cd-Pb) stress
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.07.2024
|
500 |
|
|
|a Date Revised 05.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2024 Elsevier Masson SAS. All rights reserved.
|
520 |
|
|
|a Rice production is threatened by heavy metal stress. The use of multi-walled carbon nanotubes (MWCNTs) in agriculture has been reported in previous studies. We aimed to quantify the impact of MWCNTs on the growth and physiological characteristics of scented rice under cadmium (Cd) and lead (Pb) stresses. Therefore, a pot experiment was conducted, two scented rice varieties Yuxiangyouzhan and Xiangyaxiangzhan were used as materials grown under different concentrations of MWCNTs (0, 100, and 300 mg kg-1 recorded as CK, CNPs100, and CNPs300, respectively). The yield, antioxidant response, and rhizosphere microbial community of scented rice were studied. The results showed that compared with the CK treatment, the CNPs100 and CNPs300 treatments increased leaf dry weight by 17.95%-56.22% at the heading stage, and the H2O2 content in leaves decreased significantly by 36.64%-42.27% at the maturity stage. Under CNPs100 treatment, the grain yield of two scented rice varieties increased significantly by 17.54% and 27.40%, respectively. The MWCNTs regulated the distribution of the Cd and Pb in different plant tissues. The content of Cd (0.11-0.20 mg kg-1) and Pb (0.01-0.04 mg kg-1) in grain were at a safety level (<0.2 mg kg-1). Moreover, MWCNTs increased soil microbial community abundance and altered community composition structure under Cd-Pb stress, which in turn improved agronomic traits and quality of scented rice. Overall, this study suggested that the application of MWCNTs regulates the growth, yield, physiological response, and soil microbial community, the genotypes response effect of scented rice to MWCNTs is needed further studied
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Cadmium
|
650 |
|
4 |
|a Community structure
|
650 |
|
4 |
|a Lead
|
650 |
|
4 |
|a Microorganisms
|
650 |
|
4 |
|a Multi-walled carbon nanotubes
|
650 |
|
4 |
|a Scented rice
|
650 |
|
7 |
|a Nanotubes, Carbon
|2 NLM
|
650 |
|
7 |
|a Cadmium
|2 NLM
|
650 |
|
7 |
|a 00BH33GNGH
|2 NLM
|
650 |
|
7 |
|a Lead
|2 NLM
|
650 |
|
7 |
|a 2P299V784P
|2 NLM
|
650 |
|
7 |
|a Antioxidants
|2 NLM
|
700 |
1 |
|
|a Ma, Yixian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Xiangru
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Shenggang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Meiyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tian, Hua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mo, Zhaowen
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant physiology and biochemistry : PPB
|d 1991
|g 213(2024) vom: 02. Juli, Seite 108826
|w (DE-627)NLM098178261
|x 1873-2690
|7 nnns
|
773 |
1 |
8 |
|g volume:213
|g year:2024
|g day:02
|g month:07
|g pages:108826
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.plaphy.2024.108826
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 213
|j 2024
|b 02
|c 07
|h 108826
|