ZoomNeXt : A Unified Collaborative Pyramid Network for Camouflaged Object Detection

Recent camouflaged object detection (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios. Apart from the high intrinsic similarity between camouflaged objects and their background, objects are usually diverse in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 01. Nov., Seite 9205-9220
1. Verfasser: Pang, Youwei (VerfasserIn)
Weitere Verfasser: Zhao, Xiaoqi, Xiang, Tian-Zhu, Zhang, Lihe, Lu, Huchuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM37393047X
003 DE-627
005 20241108232235.0
007 cr uuu---uuuuu
008 240622s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3417329  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM37393047X 
035 |a (NLM)38905087 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pang, Youwei  |e verfasserin  |4 aut 
245 1 0 |a ZoomNeXt  |b A Unified Collaborative Pyramid Network for Camouflaged Object Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent camouflaged object detection (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios. Apart from the high intrinsic similarity between camouflaged objects and their background, objects are usually diverse in scale, fuzzy in appearance, and even severely occluded. To this end, we propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and videos, i.e., zooming in and out. Specifically, our approach employs the zooming strategy to learn discriminative mixed-scale semantics by the multi-head scale integration and rich granularity perception units, which are designed to fully explore imperceptible clues between candidate objects and background surroundings. The former's intrinsic multi-head aggregation provides more diverse visual patterns. The latter's routing mechanism can effectively propagate inter-frame differences in spatiotemporal scenarios and be adaptively deactivated and output all-zero results for static representations. They provide a solid foundation for realizing a unified architecture for static and dynamic COD. Moreover, considering the uncertainty and ambiguity derived from indistinguishable textures, we construct a simple yet effective regularization, uncertainty awareness loss, to encourage predictions with higher confidence in candidate regions. Our highly task-friendly framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks 
650 4 |a Journal Article 
700 1 |a Zhao, Xiaoqi  |e verfasserin  |4 aut 
700 1 |a Xiang, Tian-Zhu  |e verfasserin  |4 aut 
700 1 |a Zhang, Lihe  |e verfasserin  |4 aut 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 01. Nov., Seite 9205-9220  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:01  |g month:11  |g pages:9205-9220 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3417329  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 01  |c 11  |h 9205-9220