L₀ Gradient-Regularization and Scale Space Representation Model for Cartoon and Texture Decomposition

In this paper, we consider decomposing an image into its cartoon and texture components. Traditional methods, which mainly rely on the gradient amplitude of images to distinguish between these components, often show limitations in decomposing small-scale, high-contrast texture patterns and large-sca...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 04., Seite 4016-4028
1. Verfasser: Pan, Huan (VerfasserIn)
Weitere Verfasser: Wen, You-Wei, Huang, Ya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373885938
003 DE-627
005 20240704232253.0
007 cr uuu---uuuuu
008 240621s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3403505  |2 doi 
028 5 2 |a pubmed24n1460.xml 
035 |a (DE-627)NLM373885938 
035 |a (NLM)38900621 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Huan  |e verfasserin  |4 aut 
245 1 0 |a L₀ Gradient-Regularization and Scale Space Representation Model for Cartoon and Texture Decomposition 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we consider decomposing an image into its cartoon and texture components. Traditional methods, which mainly rely on the gradient amplitude of images to distinguish between these components, often show limitations in decomposing small-scale, high-contrast texture patterns and large-scale, low-contrast structural components. Specifically, these methods tend to decompose the former to the cartoon image and the latter to the texture image, neglecting the scale features inherent in both components. To overcome these challenges, we introduce a new variational model which incorporates an L0 -based total variation norm for the cartoon component and an L2 norm for the scale space representation of the texture component. We show that the texture component has a small L2 norm in the scale space representation. We apply a quadratic penalty function to handle the non-separable L0 norm minimization problem. Numerical experiments are given to illustrate the efficiency and effectiveness of our approach 
650 4 |a Journal Article 
700 1 |a Wen, You-Wei  |e verfasserin  |4 aut 
700 1 |a Huang, Ya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 04., Seite 4016-4028  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:04  |g pages:4016-4028 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3403505  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 04  |h 4016-4028