FF-LPD : A Real-Time Frame-by-Frame License Plate Detector With Knowledge Distillation and Feature Propagation

With the increasing availability of cameras in vehicles, obtaining license plate (LP) information via on-board cameras has become feasible in traffic scenarios. LPs play a pivotal role in vehicle identification, making automatic LP detection (ALPD) a crucial area within traffic analysis. Recent adva...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 06., Seite 3893-3906
1. Verfasser: Ding, Haoxuan (VerfasserIn)
Weitere Verfasser: Gao, Junyu, Yuan, Yuan, Wang, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373845154
003 DE-627
005 20240627232642.0
007 cr uuu---uuuuu
008 240620s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3414269  |2 doi 
028 5 2 |a pubmed24n1453.xml 
035 |a (DE-627)NLM373845154 
035 |a (NLM)38896516 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Haoxuan  |e verfasserin  |4 aut 
245 1 0 |a FF-LPD  |b A Real-Time Frame-by-Frame License Plate Detector With Knowledge Distillation and Feature Propagation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the increasing availability of cameras in vehicles, obtaining license plate (LP) information via on-board cameras has become feasible in traffic scenarios. LPs play a pivotal role in vehicle identification, making automatic LP detection (ALPD) a crucial area within traffic analysis. Recent advancements in deep learning have spurred a surge of studies in ALPD. However, the computational limitations of on-board devices hinder the performance of real-time ALPD systems for moving vehicles. Therefore, we propose a real-time frame-by-frame LP detector focusing on real-time accurate LP detection. Specifically, video frames are categorized into keyframes and non-keyframes. Keyframes are processed by a deeper network (high-level stream), while non-keyframes are handled by a lightweight network (low-level stream), significantly enhancing efficiency. To achieve accurate detection, we design a knowledge distillation strategy to boost the performance of low-level stream and a feature propagation method to introduce the temporal clues in video LP detection. Our contributions are: (1) A real-time frame-by-frame LP detector for video LP detection is proposed, achieving a competitive performance with popular one-stage LP detectors. (2) A simple feature-based knowledge distillation strategy is introduced to improve the low-level stream performance. (3) A spatial-temporal attention feature propagation method is designed to refine the features from non-keyframes guided by the memory features from keyframes, leveraging the inherent temporal correlation in videos. The ablation studies show the effectiveness of knowledge distillation strategy and feature propagation method 
650 4 |a Journal Article 
700 1 |a Gao, Junyu  |e verfasserin  |4 aut 
700 1 |a Yuan, Yuan  |e verfasserin  |4 aut 
700 1 |a Wang, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 06., Seite 3893-3906  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:06  |g pages:3893-3906 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3414269  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 06  |h 3893-3906