SemiRS-COC : Semi-Supervised Classification for Complex Remote Sensing Scenes With Cross-Object Consistency

Semi-supervised learning (SSL), which aims to learn with limited labeled data and massive amounts of unlabeled data, offers a promising approach to exploit the massive amounts of satellite Earth observation images. The fundamental concept underlying most state-of-the-art SSL methods involves generat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 19., Seite 3855-3870
1. Verfasser: Liu, Qiang (VerfasserIn)
Weitere Verfasser: Yue, Jun, Kuang, Yang, Xie, Weiying, Fang, Leyuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373845138
003 DE-627
005 20240701232357.0
007 cr uuu---uuuuu
008 240620s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3414122  |2 doi 
028 5 2 |a pubmed24n1457.xml 
035 |a (DE-627)NLM373845138 
035 |a (NLM)38896517 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Qiang  |e verfasserin  |4 aut 
245 1 0 |a SemiRS-COC  |b Semi-Supervised Classification for Complex Remote Sensing Scenes With Cross-Object Consistency 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semi-supervised learning (SSL), which aims to learn with limited labeled data and massive amounts of unlabeled data, offers a promising approach to exploit the massive amounts of satellite Earth observation images. The fundamental concept underlying most state-of-the-art SSL methods involves generating pseudo-labels for unlabeled data based on image-level predictions. However, complex remote sensing (RS) scene images frequently encounter challenges, such as interference from multiple background objects and significant intra-class differences, resulting in unreliable pseudo-labels. In this paper, we propose the SemiRS-COC, a novel semi-supervised classification method for complex RS scenes. Inspired by the idea that neighboring objects in feature space should share consistent semantic labels, SemiRS-COC utilizes the similarity between foreground objects in RS images to generate reliable object-level pseudo-labels, effectively addressing the issues of multiple background objects and significant intra-class differences in complex RS images. Specifically, we first design a Local Self-Learning Object Perception (LSLOP) mechanism, which transforms multiple background objects interference of RS images into usable annotation information, enhancing the model's object perception capability. Furthermore, we present a Cross-Object Consistency Pseudo-Labeling (COCPL) strategy, which generates reliable object-level pseudo-labels by comparing the similarity of foreground objects across different RS images, effectively handling significant intra-class differences. Extensive experiments demonstrate that our proposed method achieves excellent performance compared to state-of-the-art methods on three widely-adopted RS datasets 
650 4 |a Journal Article 
700 1 |a Yue, Jun  |e verfasserin  |4 aut 
700 1 |a Kuang, Yang  |e verfasserin  |4 aut 
700 1 |a Xie, Weiying  |e verfasserin  |4 aut 
700 1 |a Fang, Leyuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 19., Seite 3855-3870  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:19  |g pages:3855-3870 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3414122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 19  |h 3855-3870