Root hairs : an underexplored target for sustainable cereal crop production

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 75(2024), 18 vom: 27. Sept., Seite 5484-5500
1. Verfasser: Tsang, Ian (VerfasserIn)
Weitere Verfasser: Atkinson, Jonathan A, Rawsthorne, Stephen, Cockram, James, Leigh, Fiona
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Review Arabidopsis crops gene function maize (Zea mays L.) rice (Oryza sativa L.) sustainable food production wheat (Triticum aestivum L.)
Beschreibung
Zusammenfassung:© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology.
To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has represented a challenging breeding target due to the inaccessibility of the root systems. Root hairs, single cell projections from the root epidermis, are perhaps the most overlooked component of root architecture traits. Root hairs play a central role in facilitating water, nutrient uptake, and soil cohesion. Current root hair architectures may be suboptimal under future agricultural production regimes, coupled with an increasingly variable climate. Here, we review the genetic control of root hair development in the world's three most important crops-rice, maize, and wheat-and highlight conservation of gene function between monocots and the model dicot species Arabidopsis. Advances in genomic techniques including gene editing combined with traditional plant breeding methods have the potential to overcome many inherent issues associated with the design of improved root hair architectures. Ultimately, this will enable detailed characterization of the effects of contrasting root hair morphology strategies on crop yield and resilience, and the development of new varieties better adapted to deliver future food security
Beschreibung:Date Completed 27.09.2024
Date Revised 29.09.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erae275