CC4S : Encouraging Certainty and Consistency in Scribble-Supervised Semantic Segmentation

Deep learning-based solutions have achieved impressive performance in semantic segmentation but often require large amounts of training data with fine-grained annotations. To alleviate such requisition, a variety of weakly supervised annotation strategies have been proposed, among which scribble sup...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 17. Dez., Seite 8918-8935
1. Verfasser: Pan, Zhiyi (VerfasserIn)
Weitere Verfasser: Sun, Haochen, Jiang, Peng, Li, Ge, Tu, Changhe, Ling, Haibin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM373731566
003 DE-627
005 20250306074313.0
007 cr uuu---uuuuu
008 240619s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3415387  |2 doi 
028 5 2 |a pubmed25n1245.xml 
035 |a (DE-627)NLM373731566 
035 |a (NLM)38885110 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Zhiyi  |e verfasserin  |4 aut 
245 1 0 |a CC4S  |b Encouraging Certainty and Consistency in Scribble-Supervised Semantic Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep learning-based solutions have achieved impressive performance in semantic segmentation but often require large amounts of training data with fine-grained annotations. To alleviate such requisition, a variety of weakly supervised annotation strategies have been proposed, among which scribble supervision is emerging as a popular one due to its user-friendly annotation way. However, the sparsity and diversity of scribble annotations make it nontrivial to train a network to produce deterministic and consistent predictions directly. To address these issues, in this paper we propose holistic solutions involving the design of network structure, loss and training procedure, named CC4S to improve Certainty and Consistency for Scribble-Supervised Semantic Segmentation. Specifically, to reduce uncertainty, CC4S embeds a random walk module into the network structure to make neural representations uniformly distributed within similar semantic regions, which works together with a soft entropy loss function to force the network to produce deterministic predictions. To encourage consistency, CC4S adopts self-supervision training and imposes the consistency loss on the eigenspace of the probability transition matrix in the random walk module (we named neural eigenspace). Such self-supervision inherits the category-level discriminability from the neural eigenspace and meanwhile helps the network focus on producing consistent predictions for the salient parts and neglect semantically heterogeneous backgrounds. Finally, to further improve the performance, CC4S uses the network predictions as pseudo-labels and retrains the network with an extra color constraint regularizer. From comprehensive experiments, CC4S achieves comparable performance to those from fully supervised methods and shows promising robustness under extreme supervision cases 
650 4 |a Journal Article 
700 1 |a Sun, Haochen  |e verfasserin  |4 aut 
700 1 |a Jiang, Peng  |e verfasserin  |4 aut 
700 1 |a Li, Ge  |e verfasserin  |4 aut 
700 1 |a Tu, Changhe  |e verfasserin  |4 aut 
700 1 |a Ling, Haibin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 17. Dez., Seite 8918-8935  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:17  |g month:12  |g pages:8918-8935 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3415387  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 17  |c 12  |h 8918-8935