A Survey on Self-Supervised Learning : Algorithms, Applications, and Future Trends

Deep supervised learning algorithms typically require a large volume of labeled data to achieve satisfactory performance. However, the process of collecting and labeling such data can be expensive and time-consuming. Self-supervised learning (SSL), a subset of unsupervised learning, aims to learn di...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 17. Dez., Seite 9052-9071
1. Verfasser: Gui, Jie (VerfasserIn)
Weitere Verfasser: Chen, Tuo, Zhang, Jing, Cao, Qiong, Sun, Zhenan, Luo, Hao, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM37373154X
003 DE-627
005 20250306074313.0
007 cr uuu---uuuuu
008 240619s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3415112  |2 doi 
028 5 2 |a pubmed25n1245.xml 
035 |a (DE-627)NLM37373154X 
035 |a (NLM)38885108 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gui, Jie  |e verfasserin  |4 aut 
245 1 2 |a A Survey on Self-Supervised Learning  |b Algorithms, Applications, and Future Trends 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep supervised learning algorithms typically require a large volume of labeled data to achieve satisfactory performance. However, the process of collecting and labeling such data can be expensive and time-consuming. Self-supervised learning (SSL), a subset of unsupervised learning, aims to learn discriminative features from unlabeled data without relying on human-annotated labels. SSL has garnered significant attention recently, leading to the development of numerous related algorithms. However, there is a dearth of comprehensive studies that elucidate the connections and evolution of different SSL variants. This paper presents a review of diverse SSL methods, encompassing algorithmic aspects, application domains, three key trends, and open research questions. First, we provide a detailed introduction to the motivations behind most SSL algorithms and compare their commonalities and differences. Second, we explore representative applications of SSL in domains such as image processing, computer vision, and natural language processing. Lastly, we discuss the three primary trends observed in SSL research and highlight the open questions that remain 
650 4 |a Journal Article 
700 1 |a Chen, Tuo  |e verfasserin  |4 aut 
700 1 |a Zhang, Jing  |e verfasserin  |4 aut 
700 1 |a Cao, Qiong  |e verfasserin  |4 aut 
700 1 |a Sun, Zhenan  |e verfasserin  |4 aut 
700 1 |a Luo, Hao  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 17. Dez., Seite 9052-9071  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:17  |g month:12  |g pages:9052-9071 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3415112  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 17  |c 12  |h 9052-9071