|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM373724985 |
003 |
DE-627 |
005 |
20250306074230.0 |
007 |
cr uuu---uuuuu |
008 |
240617s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202404705
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1245.xml
|
035 |
|
|
|a (DE-627)NLM373724985
|
035 |
|
|
|a (NLM)38884448
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Xuanhan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Humidity-Responsive Liquid Metal Core-Shell Materials for Enduring Heat Retention and Insulation
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 15.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a High humidity in extremely cold weather can undermine the insulation capability of the clothing, imposing serious life risks. Current clothing insulation technologies have inherent deficiencies in terms of insulation efficiency and humidity adaptability. Here, humidity-stimulated self-heating clothing using aluminum core-liquid metal shell microparticles (AlLM-MPs) as the filler is reported. Al@LM-MPs exhibit a distinctive capability to react to water molecules in the air to generate heat, exhibiting remarkable sensitivity across a broad temperature range. This ability leads to the creation of intelligent clothing capable of autonomously responding to extreme cold and wet weather conditions, providing both enduring heat retention and insulation capabilities
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a heat retention and insulation
|
650 |
|
4 |
|a humidity responsive
|
650 |
|
4 |
|a liquid metal
|
700 |
1 |
|
|a Sun, Mingyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Lu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rong, Huarui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Mingkui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Ling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Bing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Weihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fang, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Lining
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Shiwu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Shi-Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xiangpeng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 33 vom: 17. Aug., Seite e2404705
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:33
|g day:17
|g month:08
|g pages:e2404705
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202404705
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 33
|b 17
|c 08
|h e2404705
|