Multiple imputation of missing data with skip-pattern covariates : a comparison of alternative strategies

Multiple imputation (MI) is a widely used approach to address missing data issues in surveys. Variables included in MI can have various distributional forms with different degrees of missingness. However, when variables with missing data contain skip patterns (i.e. questions not applicable to some s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation. - 1999. - 94(2023), 7 vom: 30., Seite 1543-1570
1. Verfasser: Zhang, Guangyu (VerfasserIn)
Weitere Verfasser: He, Yulei, Cai, Bill, Moriarity, Chris, Shin, Hee-Choon, Parsons, Van, Irimata, Katherine E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of statistical computation and simulation
Schlagworte:Journal Article Multiple imputation RANDS survey missing skip-pattern variables