Towards Lightweight Super-Resolution With Dual Regression Learning

Deep neural networks have exhibited remarkable performance in image super-resolution (SR) tasks by learning a mapping from low-resolution (LR) images to high-resolution (HR) images. However, the SR problem is typically an ill-posed problem and existing methods would come with several limitations. Fi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 13. Nov., Seite 8365-8379
1. Verfasser: Guo, Yong (VerfasserIn)
Weitere Verfasser: Tan, Mingkui, Deng, Zeshuai, Wang, Jingdong, Chen, Qi, Cao, Jiezhang, Xu, Yanwu, Chen, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM37363160X
003 DE-627
005 20241108232229.0
007 cr uuu---uuuuu
008 240615s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3406556  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM37363160X 
035 |a (NLM)38875098 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Yong  |e verfasserin  |4 aut 
245 1 0 |a Towards Lightweight Super-Resolution With Dual Regression Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep neural networks have exhibited remarkable performance in image super-resolution (SR) tasks by learning a mapping from low-resolution (LR) images to high-resolution (HR) images. However, the SR problem is typically an ill-posed problem and existing methods would come with several limitations. First, the possible mapping space of SR can be extremely large since there may exist many different HR images that can be super-resolved from the same LR image. As a result, it is hard to directly learn a promising SR mapping from such a large space. Second, it is often inevitable to develop very large models with extremely high computational cost to yield promising SR performance. In practice, one can use model compression techniques to obtain compact models by reducing model redundancy. Nevertheless, it is hard for existing model compression methods to accurately identify the redundant components due to the extremely large SR mapping space. To alleviate the first challenge, we propose a dual regression learning scheme to reduce the space of possible SR mappings. Specifically, in addition to the mapping from LR to HR images, we learn an additional dual regression mapping to estimate the downsampling kernel and reconstruct LR images. In this way, the dual mapping acts as a constraint to reduce the space of possible mappings. To address the second challenge, we propose a dual regression compression (DRC) method to reduce model redundancy in both layer-level and channel-level based on channel pruning. Specifically, we first develop a channel number search method that minimizes the dual regression loss to determine the redundancy of each layer. Given the searched channel numbers, we further exploit the dual regression manner to evaluate the importance of channels and prune the redundant ones. Extensive experiments show the effectiveness of our method in obtaining accurate and efficient SR models 
650 4 |a Journal Article 
700 1 |a Tan, Mingkui  |e verfasserin  |4 aut 
700 1 |a Deng, Zeshuai  |e verfasserin  |4 aut 
700 1 |a Wang, Jingdong  |e verfasserin  |4 aut 
700 1 |a Chen, Qi  |e verfasserin  |4 aut 
700 1 |a Cao, Jiezhang  |e verfasserin  |4 aut 
700 1 |a Xu, Yanwu  |e verfasserin  |4 aut 
700 1 |a Chen, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 13. Nov., Seite 8365-8379  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:13  |g month:11  |g pages:8365-8379 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3406556  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 13  |c 11  |h 8365-8379