Angular Isotonic Loss Guided Multi-Layer Integration for Few-Shot Fine-Grained Image Classification

Recent research on few-shot fine-grained image classification (FSFG) has predominantly focused on extracting discriminative features. The limited attention paid to the role of loss functions has resulted in weaker preservation of similarity relationships between query and support instances, thereby...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 13., Seite 3778-3792
1. Verfasser: Zhao, Li-Jun (VerfasserIn)
Weitere Verfasser: Chen, Zhen-Duo, Ma, Zhen-Xiang, Luo, Xin, Xu, Xin-Shun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373580738
003 DE-627
005 20240626232553.0
007 cr uuu---uuuuu
008 240614s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3411474  |2 doi 
028 5 2 |a pubmed24n1452.xml 
035 |a (DE-627)NLM373580738 
035 |a (NLM)38870000 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Li-Jun  |e verfasserin  |4 aut 
245 1 0 |a Angular Isotonic Loss Guided Multi-Layer Integration for Few-Shot Fine-Grained Image Classification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent research on few-shot fine-grained image classification (FSFG) has predominantly focused on extracting discriminative features. The limited attention paid to the role of loss functions has resulted in weaker preservation of similarity relationships between query and support instances, thereby potentially limiting the performance of FSFG. In this regard, we analyze the limitations of widely adopted cross-entropy loss and introduce a novel Angular ISotonic (AIS) loss. The AIS loss introduces an angular margin to constrain the prototypes to maintain a certain distance from a pre-set threshold. It guides the model to converge more stably, learn clearer boundaries among highly similar classes, and achieve higher accuracy faster with limited instances. Moreover, to better accommodate the feature requirements of the AIS loss and fully exploit its potential in FSFG, we propose a Multi-Layer Integration (MLI) network that captures object features from multiple perspectives to provide more comprehensive and informative representations of the input images. Extensive experiments demonstrate the effectiveness of our proposed method on four standard fine-grained benchmarks. Codes are available at: https://github.com/Legenddddd/AIS-MLI 
650 4 |a Journal Article 
700 1 |a Chen, Zhen-Duo  |e verfasserin  |4 aut 
700 1 |a Ma, Zhen-Xiang  |e verfasserin  |4 aut 
700 1 |a Luo, Xin  |e verfasserin  |4 aut 
700 1 |a Xu, Xin-Shun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 13., Seite 3778-3792  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:13  |g pages:3778-3792 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3411474  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 13  |h 3778-3792