In Situ Growth of CuBi2O4/Bi2O3 Z-Scheme Heterostructures for Bifunctional Photocatalytic Applications
In this study, we present an in situ solvothermal approach for synthesizing a highly efficient bifunctional CuBi2O4/Bi2O3 composite catalyst for applications in H2 production and the removal of organic pollutants. Various characterization techniques, including XRD, UV-vis DRS, SEM, TEM, and EIS, wer...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 25 vom: 25. Juni, Seite 12954-12966 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | In this study, we present an in situ solvothermal approach for synthesizing a highly efficient bifunctional CuBi2O4/Bi2O3 composite catalyst for applications in H2 production and the removal of organic pollutants. Various characterization techniques, including XRD, UV-vis DRS, SEM, TEM, and EIS, were used to characterize the prepared catalyst. Density functional theory calculations confirmed a Z-scheme mechanism, revealing the charge transfer mechanism from the Bi2O3 surface to the CuBi2O4 surface. The composite exhibited a photocurrent of 2.83 × 104 A/cm2 and a hydrogen production rate of 526 μmolg-1h-1 under natural sunlight. Moreover, the catalyst demonstrated efficient degradation of RhB up to 58% in 120 min under 50 W LED illumination. Additionally, multiple recycling tests confirmed its high stability and recyclability, making it a promising candidate for various applications in the field of photocatalysis |
---|---|
Beschreibung: | Date Revised 25.06.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c00589 |