The enzyme encoded by Myrmecia incisa, a green microalga, phospholipase A2 gene preferentially hydrolyzes arachidonic acid at the sn-2 position of phosphatidylcholine

Copyright © 2024. Published by Elsevier Masson SAS.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 213(2024) vom: 01. Juli, Seite 108806
1. Verfasser: Lin, Mei-Zhi (VerfasserIn)
Weitere Verfasser: Bi, Yan-Hui, Li, Si-Qi, Xie, Jin-Hai, Zhou, Zhi-Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Arachidonic acid (ArA) Free fatty acid (FFA) Heterologous expression Myrmecia incisa Phosphatidylcholine (PC) Phospholipase A(2) (PLA(2)) Recombinant mMiPLA(2) Substrate preference Thin-layer chromatography (TLC) mehr... Phospholipases A2 EC 3.1.1.4 Arachidonic Acid 27YG812J1I Phosphatidylcholines Plant Proteins
Beschreibung
Zusammenfassung:Copyright © 2024. Published by Elsevier Masson SAS.
The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG
Beschreibung:Date Completed 05.07.2024
Date Revised 05.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.108806