Pose2Gaze : Eye-Body Coordination During Daily Activities for Gaze Prediction From Full-Body Poses

Human eye gaze plays a significant role in many virtual and augmented reality (VR/AR) applications, such as gaze-contingent rendering, gaze-based interaction, or eye-based activity recognition. However, prior works on gaze analysis and prediction have only explored eye-head coordination and were lim...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 11. Juni
1. Verfasser: Hu, Zhiming (VerfasserIn)
Weitere Verfasser: Xu, Jiahui, Schmitt, Syn, Bulling, Andreas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM37349596X
003 DE-627
005 20240626232528.0
007 cr uuu---uuuuu
008 240612s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3412190  |2 doi 
028 5 2 |a pubmed24n1452.xml 
035 |a (DE-627)NLM37349596X 
035 |a (NLM)38861443 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Zhiming  |e verfasserin  |4 aut 
245 1 0 |a Pose2Gaze  |b Eye-Body Coordination During Daily Activities for Gaze Prediction From Full-Body Poses 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Human eye gaze plays a significant role in many virtual and augmented reality (VR/AR) applications, such as gaze-contingent rendering, gaze-based interaction, or eye-based activity recognition. However, prior works on gaze analysis and prediction have only explored eye-head coordination and were limited to human-object interactions. We first report a comprehensive analysis of eye-body coordination in various human-object and human-human interaction activities based on four public datasets collected in real-world (MoGaze), VR (ADT), as well as AR (GIMO and EgoBody) environments. We show that in human-object interactions, e.g. pick and place, eye gaze exhibits strong correlations with full-body motion while in human-human interactions, e.g. chat and teach, a person's gaze direction is correlated with the body orientation towards the interaction partner. Informed by these analyses we then present Pose2Gaze - a novel eye-body coordination model that uses a convolutional neural network and a spatio-temporal graph convolutional neural network to extract features from head direction and full-body poses, respectively, and then uses a convolutional neural network to predict eye gaze. We compare our method with state-of-the-art methods that predict eye gaze only from head movements and show that Pose2Gaze outperforms these baselines with an average improvement of 24.0% on MoGaze, 10.1% on ADT, 21.3% on GIMO, and 28.6% on EgoBody in mean angular error, respectively. We also show that our method significantly outperforms prior methods in the sample downstream task of eye-based activity recognition. These results underline the significant information content available in eye-body coordination during daily activities and open up a new direction for gaze prediction 
650 4 |a Journal Article 
700 1 |a Xu, Jiahui  |e verfasserin  |4 aut 
700 1 |a Schmitt, Syn  |e verfasserin  |4 aut 
700 1 |a Bulling, Andreas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 11. Juni  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:11  |g month:06 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3412190  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 11  |c 06