REACT : Remainder Adaptive Compensation for Domain Adaptive Object Detection

Domain adaptive object detection (DAOD) aims to infer a robust detector on the target domain with the labelled source datasets. Recent studies utilize a feature extractor shared on the source and target domains to capture the domain-invariant features and the task-relevant information with both feat...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 10., Seite 3735-3748
Auteur principal: Li, Haochen (Auteur)
Autres auteurs: Zhang, Rui, Yao, Hantao, Zhang, Xin, Hao, Yifan, Song, Xinkai, Li, Ling
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM373453019
003 DE-627
005 20250306071140.0
007 cr uuu---uuuuu
008 240611s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3409024  |2 doi 
028 5 2 |a pubmed25n1244.xml 
035 |a (DE-627)NLM373453019 
035 |a (NLM)38857136 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Haochen  |e verfasserin  |4 aut 
245 1 0 |a REACT  |b Remainder Adaptive Compensation for Domain Adaptive Object Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Domain adaptive object detection (DAOD) aims to infer a robust detector on the target domain with the labelled source datasets. Recent studies utilize a feature extractor shared on the source and target domains to capture the domain-invariant features and the task-relevant information with both feature-alignment constraint and source annotations. However, the feature extractor shared across domains discards partial task-relevant information of the target domain due to the domain gap and lack of target annotations, leading to compromised discrimination capabilities within target domain. To this end, we propose a novel REmainder Adaptive CompensaTion network (REACT) to adaptively compensate the extracted features with the remainder features for generating task-relevant features. The key insight is that the remainder features contain the discarded task-relevant information, so they can be adapted to compensate for the inadequate target features. Especially, REACT introduces an additional remainder branch to regain the remainder features, and then adaptively utilizes them to compensate for the discarded task-relevant information, improving discrimination on the target domain. Extensive experiments over multiple cross-domain adaptation tasks with three baselines demonstrate that our approach gains significant improvements and achieves superior performance compared with highly-optimized state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Zhang, Rui  |e verfasserin  |4 aut 
700 1 |a Yao, Hantao  |e verfasserin  |4 aut 
700 1 |a Zhang, Xin  |e verfasserin  |4 aut 
700 1 |a Hao, Yifan  |e verfasserin  |4 aut 
700 1 |a Song, Xinkai  |e verfasserin  |4 aut 
700 1 |a Li, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 10., Seite 3735-3748  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:10  |g pages:3735-3748 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3409024  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 10  |h 3735-3748