NDDepth : Normal-Distance Assisted Monocular Depth Estimation and Completion

Over the past few years, monocular depth estimation and completion have been paid more and more attention from the computer vision community because of their widespread applications. In this paper, we introduce novel physics (geometry)-driven deep learning frameworks for these two tasks by assuming...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 30. Nov., Seite 8883-8899
1. Verfasser: Shao, Shuwei (VerfasserIn)
Weitere Verfasser: Pei, Zhongcai, Chen, Weihai, Chen, Peter C Y, Li, Zhengguo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373452993
003 DE-627
005 20241108232224.0
007 cr uuu---uuuuu
008 240611s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3411571  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM373452993 
035 |a (NLM)38857129 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shao, Shuwei  |e verfasserin  |4 aut 
245 1 0 |a NDDepth  |b Normal-Distance Assisted Monocular Depth Estimation and Completion 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Over the past few years, monocular depth estimation and completion have been paid more and more attention from the computer vision community because of their widespread applications. In this paper, we introduce novel physics (geometry)-driven deep learning frameworks for these two tasks by assuming that 3D scenes are constituted with piece-wise planes. Instead of directly estimating the depth map or completing the sparse depth map, we propose to estimate the surface normal and plane-to-origin distance maps or complete the sparse surface normal and distance maps as intermediate outputs. To this end, we develop a normal-distance head that outputs pixel-level surface normal and distance. Afterthat, the surface normal and distance maps are regularized by a developed plane-aware consistency constraint, which are then transformed into depth maps. Furthermore, we integrate an additional depth head to strengthen the robustness of the proposed frameworks. Extensive experiments on the NYU-Depth-v2, KITTI and SUN RGB-D datasets demonstrate that our method exceeds in performance prior state-of-the-art monocular depth estimation and completion competitors 
650 4 |a Journal Article 
700 1 |a Pei, Zhongcai  |e verfasserin  |4 aut 
700 1 |a Chen, Weihai  |e verfasserin  |4 aut 
700 1 |a Chen, Peter C Y  |e verfasserin  |4 aut 
700 1 |a Li, Zhengguo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 30. Nov., Seite 8883-8899  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:30  |g month:11  |g pages:8883-8899 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3411571  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 30  |c 11  |h 8883-8899