Statistical Analysis of Complex Shape Graphs

This paper provides developments in statistical shape analysis of shape graphs, and demonstrates them using such complex objects as Retinal Blood Vessel (RBV) networks and neurons. The shape graphs are represented by sets of nodes and edges (articulated curves) connecting some nodes. The goals are t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 10. Nov., Seite 8788-8805
1. Verfasser: Bal, Aditi Basu (VerfasserIn)
Weitere Verfasser: Guo, Xiaoyang, Needham, Tom, Srivastava, Anuj
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373452950
003 DE-627
005 20241107232051.0
007 cr uuu---uuuuu
008 240611s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3409834  |2 doi 
028 5 2 |a pubmed24n1593.xml 
035 |a (DE-627)NLM373452950 
035 |a (NLM)38857130 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bal, Aditi Basu  |e verfasserin  |4 aut 
245 1 0 |a Statistical Analysis of Complex Shape Graphs 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper provides developments in statistical shape analysis of shape graphs, and demonstrates them using such complex objects as Retinal Blood Vessel (RBV) networks and neurons. The shape graphs are represented by sets of nodes and edges (articulated curves) connecting some nodes. The goals are to utilize nodes (locations, connectivity) and edges (edge weights and shapes) to: (1) characterize shapes, (2) quantify shape differences, and (3) model statistical variability. We develop a mathematical representation, elastic Riemannian metrics, and associated tools for shape graphs. Specifically, we derive tools for shape graph registration, geodesics, statistical summaries, shape modeling, and shape synthesis. Geodesics are convenient for visualizing optimal deformations, and PCA helps in dimension reduction and statistical modeling. One key challenge lies in comparing shape graphs with vastly different complexities (in number of nodes and edges). This paper introduces a novel multi-scale representation to handle this challenge. Using the notions of (1) "effective resistance" to cluster nodes and (2) elastic shape averaging of edge curves, it reduces graph complexity while retaining overall structures. This allows shape comparisons by bringing graphs to similar complexities. We demonstrate these ideas on 2D RBV networks from the STARE and DRIVE databases and 3D neurons from the NeuroMorpho database 
650 4 |a Journal Article 
700 1 |a Guo, Xiaoyang  |e verfasserin  |4 aut 
700 1 |a Needham, Tom  |e verfasserin  |4 aut 
700 1 |a Srivastava, Anuj  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 10. Nov., Seite 8788-8805  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:10  |g month:11  |g pages:8788-8805 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3409834  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 10  |c 11  |h 8788-8805