TS-tools : Rapid and automated localization of transition states based on a textual reaction SMILES input

© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 45(2024), 27 vom: 15. Okt., Seite 2308-2317
Auteur principal: Stuyver, Thijs (Auteur)
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article DFT SMILES automation transition states xTB
LEADER 01000caa a22002652c 4500
001 NLM373383096
003 DE-627
005 20250306070404.0
007 cr uuu---uuuuu
008 240609s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27374  |2 doi 
028 5 2 |a pubmed25n1243.xml 
035 |a (DE-627)NLM373383096 
035 |a (NLM)38850166 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Stuyver, Thijs  |e verfasserin  |4 aut 
245 1 0 |a TS-tools  |b Rapid and automated localization of transition states based on a textual reaction SMILES input 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a Here, TS-tools is presented, a Python package facilitating the automated localization of transition states (TS) based on a textual reaction SMILES input. TS searches can either be performed at xTB or DFT level of theory, with the former yielding guesses at marginal computational cost, and the latter directly yielding accurate structures at greater expense. On a benchmarking dataset of mono- and bimolecular reactions, TS-tools reaches an excellent success rate of 95% already at xTB level of theory. For tri- and multimolecular reaction pathways - which are typically not benchmarked when developing new automated TS search approaches, yet are relevant for various types of reactivity, cf. solvent- and autocatalysis and enzymatic reactivity - TS-tools retains its ability to identify TS geometries, though a DFT treatment becomes essential in many cases. Throughout the presented applications, a particular emphasis is placed on solvation-induced mechanistic changes, another issue that received limited attention in the automated TS search literature so far 
650 4 |a Journal Article 
650 4 |a DFT 
650 4 |a SMILES 
650 4 |a automation 
650 4 |a transition states 
650 4 |a xTB 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 27 vom: 15. Okt., Seite 2308-2317  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:45  |g year:2024  |g number:27  |g day:15  |g month:10  |g pages:2308-2317 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27374  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 27  |b 15  |c 10  |h 2308-2317