Voltage-Driven Fluorine Motion for Novel Organic Spintronic Memristor

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 33 vom: 06. Aug., Seite e2401611
1. Verfasser: Nachawaty, Abir (VerfasserIn)
Weitere Verfasser: Chen, Tongxin, Ibrahim, Fatima, Wang, Yuchen, Hao, Yafei, Dalla Francesca, Kevin, Tyagi, Priyanka, Da Costa, Antonio, Ferri, Anthony, Liu, Chuanchuan, Li, Xiaoguang, Chshiev, Mairbek, Migot, Sylvie, Badie, Laurent, Jahjah, Walaa, Desfeux, Rachel, Le Breton, Jean-Christophe, Schieffer, Philippe, Le Pottier, Arnaud, Gries, Thomas, Devaux, Xavier, Lu, Yuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Langmuir‐Blodgett memristor neuromorphic computation poly(vinylidene fluoride) spin polarization tunneling magnetoresistance
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Integrating tunneling magnetoresistance (TMR) effect in memristors is a long-term aspiration because it allows to realize multifunctional devices, such as multi-state memory and tunable plasticity for synaptic function. However, the reported TMR in different multiferroic tunnel junctions is limited to 100%. This work demonstrates a giant TMR of -266% in La0.6Sr0.4MnO3(LSMO)/poly(vinylidene fluoride)(PVDF)/Co memristor with thin organic barrier. Different from the ferroelectricity-based memristors, this work discovers that the voltage-driven florine (F) motion in the junction generates a huge reversible resistivity change up to 106% with nanosecond (ns) timescale. Removing F from PVDF layer suppresses the dipole field in the tunneling barrier, thereby significantly enhances the TMR. Furthermore, the TMR can be tuned by different polarizing voltage due to the strong modification of spin-polarization at the LSMO/PVDF interface upon F doping. Combining of high TMR in the organic memristor paves the way to develop high-performance multifunctional devices for storage and neuromorphic applications
Beschreibung:Date Revised 15.08.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202401611