Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data

© Victor Poline et al. 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 3 vom: 01. Juni, Seite 831-841
1. Verfasser: Poline, Victor (VerfasserIn)
Weitere Verfasser: Purushottam Raj Purohit, Ravi Raj Purohit, Bordet, Pierre, Blanc, Nils, Martinetto, Pauline
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article X-ray diffraction computed tomography cultural heritage deep learning neural networks tomography
LEADER 01000naa a22002652 4500
001 NLM373349319
003 DE-627
005 20240608233202.0
007 cr uuu---uuuuu
008 240608s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576724003704  |2 doi 
028 5 2 |a pubmed24n1433.xml 
035 |a (DE-627)NLM373349319 
035 |a (NLM)38846765 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Poline, Victor  |e verfasserin  |4 aut 
245 1 0 |a Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.06.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Victor Poline et al. 2024. 
520 |a Recent developments in synchrotron radiation facilities have increased the amount of data generated during acquisitions considerably, requiring fast and efficient data processing techniques. Here, the application of dense neural networks (DNNs) to data treatment of X-ray diffraction computed tomography (XRD-CT) experiments is presented. Processing involves mapping the phases in a tomographic slice by predicting the phase fraction in each individual pixel. DNNs were trained on sets of calculated XRD patterns generated using a Python algorithm developed in-house. An initial Rietveld refinement of the tomographic slice sum pattern provides additional information (peak widths and integrated intensities for each phase) to improve the generation of simulated patterns and make them closer to real data. A grid search was used to optimize the network architecture and demonstrated that a single fully connected dense layer was sufficient to accurately determine phase proportions. This DNN was used on the XRD-CT acquisition of a mock-up and a historical sample of highly heterogeneous multi-layered decoration of a late medieval statue, called 'applied brocade'. The phase maps predicted by the DNN were in good agreement with other methods, such as non-negative matrix factorization and serial Rietveld refinements performed with TOPAS, and outperformed them in terms of speed and efficiency. The method was evaluated by regenerating experimental patterns from predictions and using the R-weighted profile as the agreement factor. This assessment allowed us to confirm the accuracy of the results 
650 4 |a Journal Article 
650 4 |a X-ray diffraction 
650 4 |a computed tomography 
650 4 |a cultural heritage 
650 4 |a deep learning 
650 4 |a neural networks 
650 4 |a tomography 
700 1 |a Purushottam Raj Purohit, Ravi Raj Purohit  |e verfasserin  |4 aut 
700 1 |a Bordet, Pierre  |e verfasserin  |4 aut 
700 1 |a Blanc, Nils  |e verfasserin  |4 aut 
700 1 |a Martinetto, Pauline  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 3 vom: 01. Juni, Seite 831-841  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 3  |g day:01  |g month:06  |g pages:831-841 
856 4 0 |u http://dx.doi.org/10.1107/S1600576724003704  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 3  |b 01  |c 06  |h 831-841