|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM373332912 |
003 |
DE-627 |
005 |
20250306065829.0 |
007 |
cr uuu---uuuuu |
008 |
240608s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202405109
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1243.xml
|
035 |
|
|
|a (DE-627)NLM373332912
|
035 |
|
|
|a (NLM)38845131
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Michael W
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Water Transport-Induced Liquid-Liquid Phase Separation Facilitates Gelation for Controllable and Facile Fabrication of Physically Crosslinked Microgels
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.08.2024
|
500 |
|
|
|a Date Revised 28.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Physically crosslinked microgels (PCMs) offer a biocompatible platform for various biomedical applications. However, current PCM fabrication methods suffer from their complexity and poor controllability, due to their reliance on altering physical conditions to initiate gelation and their dependence on specific materials. To address this issue, a novel PCM fabrication method is devised, which employs water transport-induced liquid-liquid phase separation (LLPS) to trigger the intermolecular interaction-supported sol-gel transition within aqueous emulsion droplets. This method enables the controllable and facile generation of PCMs through a single emulsification step, allowing for the facile production of PCMs with various materials and sizes, as well as controllable structures and mechanical properties. Moreover, this PCM fabrication method holds great promise for diverse biomedical applications. The interior of the PCM not only supports the encapsulation and proliferation of bacteria but also facilitates the encapsulation of eukaryotic cells after transforming the system into an all-aqueous emulsion. Furthermore, through appropriate surface functionalization, the PCMs effectively activate T cells in vitro upon coculturing. This work represents an advancement in PCM fabrication and offers new insights and perspectives for microgel engineering
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a liquid–liquid phase separation
|
650 |
|
4 |
|a microgels
|
650 |
|
4 |
|a physical crosslink
|
650 |
|
4 |
|a water transport
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Microgels
|2 NLM
|
650 |
|
7 |
|a Emulsions
|2 NLM
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Cross-Linking Reagents
|2 NLM
|
700 |
1 |
|
|a Fan, Dongdong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xiangjian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Dongbo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Yuhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ao, Yanxiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yuyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zhiqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Yiting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ling, Sida
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Kaini
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kong, Wenyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Jianhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Du, Yanan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 35 vom: 18. Aug., Seite e2405109
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:35
|g day:18
|g month:08
|g pages:e2405109
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202405109
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 35
|b 18
|c 08
|h e2405109
|