Highly Efficient and Unsupervised Framework for Moving Object Detection in Satellite Videos

Moving object detection in satellite videos (SVMOD) is a challenging task due to the extremely dim and small target characteristics. Current learning-based methods extract spatio-temporal information from multi-frame dense representation with labor-intensive manual labels to tackle SVMOD, which need...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 05. Dez., Seite 11532-11539
1. Verfasser: Xiao, Chao (VerfasserIn)
Weitere Verfasser: An, Wei, Zhang, Yifan, Su, Zhuo, Li, Miao, Sheng, Weidong, Pietikainen, Matti, Liu, Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM373261314
003 DE-627
005 20250306065039.0
007 cr uuu---uuuuu
008 240606s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3409824  |2 doi 
028 5 2 |a pubmed25n1243.xml 
035 |a (DE-627)NLM373261314 
035 |a (NLM)38837927 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Chao  |e verfasserin  |4 aut 
245 1 0 |a Highly Efficient and Unsupervised Framework for Moving Object Detection in Satellite Videos 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Moving object detection in satellite videos (SVMOD) is a challenging task due to the extremely dim and small target characteristics. Current learning-based methods extract spatio-temporal information from multi-frame dense representation with labor-intensive manual labels to tackle SVMOD, which needs high annotation costs and contains tremendous computational redundancy due to the severe imbalance between foreground and background regions. In this paper, we propose a highly efficient unsupervised framework for SVMOD. Specifically, we propose a generic unsupervised framework for SVMOD, in which pseudo labels generated by a traditional method can evolve with the training process to promote detection performance. Furthermore, we propose a highly efficient and effective sparse convolutional anchor-free detection network by sampling the dense multi-frame image form into a sparse spatio-temporal point cloud representation and skipping the redundant computation on background regions. Coping these two designs, we can achieve both high efficiency (label and computation efficiency) and effectiveness. Extensive experiments demonstrate that our method can not only process 98.8 frames per second on 1024 ×1024 images but also achieve state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a An, Wei  |e verfasserin  |4 aut 
700 1 |a Zhang, Yifan  |e verfasserin  |4 aut 
700 1 |a Su, Zhuo  |e verfasserin  |4 aut 
700 1 |a Li, Miao  |e verfasserin  |4 aut 
700 1 |a Sheng, Weidong  |e verfasserin  |4 aut 
700 1 |a Pietikainen, Matti  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 05. Dez., Seite 11532-11539  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:05  |g month:12  |g pages:11532-11539 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3409824  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 05  |c 12  |h 11532-11539