Plasmonic Near-Infrared-Response S-Scheme ZnO/CuInS2 Photocatalyst for H2O2 Production Coupled with Glycerin Oxidation
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 30. Aug., Seite e2406460 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article glycerin oxidation reaction localized surface plasmon resonances near‐infrared response photocatalytic H2O2 production |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Solar fuel synthesis is intriguing because solar energy is abundant and this method compensates for its intermittency. However, most photocatalysts can only absorb UV-to-visible light, while near-infrared (NIR) light remains unexploited. Surprisingly, the charge transfer between ZnO and CuInS2 quantum dots (QDs) can transform a NIR-inactive ZnO into a NIR-active composite. This strong response is attributed to the increased concentration of free charge carriers in the p-type semiconductor at the interface after the charge migration between ZnO and CuInS2, enhancing the localized surface plasmon resonance (LSPR) effect and the NIR response of CuInS2. As a paradigm, this ZnO/CuInS2 heterojunction is used for H2O2 production coupled with glycerin oxidation and demonstrates supreme performance, corroborating the importance of NIR response and efficient charge transfer. Mechanistic studies through contact potential difference (CPD), Hall effect test, and finite element method (FEM) calculation allow for the direct correlation between the NIR response and charge transfer. This approach bypasses the general light response issues, thereby stepping forward to the ambitious goal of harnessing the entire solar spectrum |
---|---|
Beschreibung: | Date Revised 08.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202406460 |