Relational Proxies : Fine-Grained Relationships as Zero-Shot Discriminators

Visual categories that largely share the same set of local parts cannot be discriminated based on part information alone, as they mostly differ in the way the local parts relate to the overall global structure of the object. We propose Relational Proxies, a novel approach that leverages the relation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 06. Nov., Seite 8652-8664
1. Verfasser: Chaudhuri, Abhra (VerfasserIn)
Weitere Verfasser: Mancini, Massimiliano, Akata, Zeynep, Dutta, Anjan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373216122
003 DE-627
005 20241108232216.0
007 cr uuu---uuuuu
008 240605s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3408913  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM373216122 
035 |a (NLM)38833399 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chaudhuri, Abhra  |e verfasserin  |4 aut 
245 1 0 |a Relational Proxies  |b Fine-Grained Relationships as Zero-Shot Discriminators 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Visual categories that largely share the same set of local parts cannot be discriminated based on part information alone, as they mostly differ in the way the local parts relate to the overall global structure of the object. We propose Relational Proxies, a novel approach that leverages the relational information between the global and local views of an object for encoding its semantic label, even for categories it has not encountered during training. Starting with a rigorous formalization of the notion of distinguishability between categories that share attributes, we prove the necessary and sufficient conditions that a model must satisfy in order to learn the underlying decision boundaries to tell them apart. We design Relational Proxies based on our theoretical findings and evaluate it on seven challenging fine-grained benchmark datasets and achieve state-of-the-art results on all of them, surpassing the performance of all existing works with a margin exceeding 4% in some cases. We additionally show that Relational Proxies also generalizes to the zero-shot setting, where it can efficiently leverage emergent relationships among attributes and image views to generalize to unseen categories, surpassing current state-of-the-art in both the non-generative and generative settings. Implementation is available at https://github.com/abhrac/relational-proxies 
650 4 |a Journal Article 
700 1 |a Mancini, Massimiliano  |e verfasserin  |4 aut 
700 1 |a Akata, Zeynep  |e verfasserin  |4 aut 
700 1 |a Dutta, Anjan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 06. Nov., Seite 8652-8664  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:06  |g month:11  |g pages:8652-8664 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3408913  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 06  |c 11  |h 8652-8664