FATE : Learning Effective Binary Descriptors with Group Fairness

Hashing has received significant interest in large-scale data retrieval due to its outstanding computational efficiency. Of late, numerous deep hashing approaches have emerged, which have obtained impressive performance. However, these approaches can contain ethical risks during image retrieval. To...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2024) vom: 04. Juni
1. Verfasser: Zhang, Fan (VerfasserIn)
Weitere Verfasser: Chen, Chong, Hua, Xian-Sheng, Luo, Xiao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM373216068
003 DE-627
005 20240605233025.0
007 cr uuu---uuuuu
008 240605s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3406134  |2 doi 
028 5 2 |a pubmed24n1429.xml 
035 |a (DE-627)NLM373216068 
035 |a (NLM)38833395 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Fan  |e verfasserin  |4 aut 
245 1 0 |a FATE  |b Learning Effective Binary Descriptors with Group Fairness 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Hashing has received significant interest in large-scale data retrieval due to its outstanding computational efficiency. Of late, numerous deep hashing approaches have emerged, which have obtained impressive performance. However, these approaches can contain ethical risks during image retrieval. To address this, we are the first to study the problem of group fairness within learning to hash and introduce a novel method termed Fairness-aware Hashing with Mixture of Experts (FATE). Specifically, FATE leverages the mixture-of-experts framework as the hashing network, where each expert contributes knowledge from an individual viewpoint, followed by aggregation using the gating mechanism. This strongly enhances the model capability, facilitating the generation of both discriminative and unbiased binary descriptors. We also incorporate fairness-aware contrastive learning, combining sensitive labels with feature similarities to ensure unbiased hash code learning. Furthermore, an adversarial learning objective condition on both deep features and hash codes is employed to further eliminate group biases. Extensive experiments on several benchmark datasets validate the superiority of the proposed FATE compared with various state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Chen, Chong  |e verfasserin  |4 aut 
700 1 |a Hua, Xian-Sheng  |e verfasserin  |4 aut 
700 1 |a Luo, Xiao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2024) vom: 04. Juni  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:04  |g month:06 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3406134  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 04  |c 06