Multiphase Symbiotic Engineered Elastic Ceramic-Carbon Aerogels with Advanced Thermal Protection in Extreme Oxidative Environments

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 03. Aug., Seite e2406055
1. Verfasser: Chang, Xinyi (VerfasserIn)
Weitere Verfasser: Yang, Yunfei, Cheng, Xiaota, Yin, Xia, Yu, Jianyong, Liu, Yi-Tao, Ding, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article ceramic‐carbon elastic aerogels multiphase thermal insulation thermomechanical stability
LEADER 01000caa a22002652 4500
001 NLM37317506X
003 DE-627
005 20240808233131.0
007 cr uuu---uuuuu
008 240603s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202406055  |2 doi 
028 5 2 |a pubmed24n1495.xml 
035 |a (DE-627)NLM37317506X 
035 |a (NLM)38829267 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, Xinyi  |e verfasserin  |4 aut 
245 1 0 |a Multiphase Symbiotic Engineered Elastic Ceramic-Carbon Aerogels with Advanced Thermal Protection in Extreme Oxidative Environments 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Elastic aerogels can dissipate aerodynamic forces and thermal stresses by reversible slipping or deforming to avoid sudden failure caused by stress concentration, making them the most promising candidates for thermal protection in aerospace applications. However, existing elastic aerogels face difficulties achieving reliable protection above 1500 °C in aerobic environments due to their poor thermomechanical stability and significantly increased thermal conductivity at elevated temperatures. Here, a multiphase sequence and multiscale structural engineering strategy is proposed to synthesize mullite-carbon hybrid nanofibrous aerogels. The heterogeneous symbiotic effect between components simultaneously inhibits ceramic crystalline coarsening and carbon thermal etching, thus ensuring the thermal stability of the nanofiber building blocks. Efficient load transfer and high interfacial thermal resistance at crystalline-amorphous phase boundaries on the microscopic scale, coupled with mesoscale lamellar cellular and locally closed-pore structures, achieve rapid stress dissipation and thermal energy attenuation in aerogels. This robust thermal protection material system is compatible with ultralight density (30 mg cm-3), reversible compression strain of 60%, extraordinary thermomechanical stability (up to 1600 °C in oxidative environments), and ultralow thermal conductivity (50.58 mW m-1 K-1 at 300 °C), offering new options and possibilities to cope with the harsh operating environments faced by space exploration 
650 4 |a Journal Article 
650 4 |a ceramic‐carbon 
650 4 |a elastic aerogels 
650 4 |a multiphase 
650 4 |a thermal insulation 
650 4 |a thermomechanical stability 
700 1 |a Yang, Yunfei  |e verfasserin  |4 aut 
700 1 |a Cheng, Xiaota  |e verfasserin  |4 aut 
700 1 |a Yin, Xia  |e verfasserin  |4 aut 
700 1 |a Yu, Jianyong  |e verfasserin  |4 aut 
700 1 |a Liu, Yi-Tao  |e verfasserin  |4 aut 
700 1 |a Ding, Bin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 32 vom: 03. Aug., Seite e2406055  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:32  |g day:03  |g month:08  |g pages:e2406055 
856 4 0 |u http://dx.doi.org/10.1002/adma.202406055  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 32  |b 03  |c 08  |h e2406055