Stem Cell-Derived Nanovesicles Embedded in Dual-Layered Hydrogel for Programmed ROS Regulation and Comprehensive Tissue Regeneration in Burn Wound Healing

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 31. Aug., Seite e2401369
1. Verfasser: Zhao, Meijiao (VerfasserIn)
Weitere Verfasser: Kang, Miaomiao, Wang, Jingru, Yang, Ronghua, Zhong, Xiaoping, Xie, Qihu, Zhou, Sitong, Zhang, Zhijun, Zheng, Judun, Zhang, Yixun, Guo, Shuang, Lin, Weiqiang, Huang, Jialin, Guo, Genghong, Fu, Yu, Li, Bin, Fan, Zhijin, Li, Xipeng, Wang, Dong, Chen, Xu, Tang, Ben Zhong, Liao, Yuhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article burn wound healing intelligent hydrogel reactive oxygen species regulation stem cell‐derived nanovesicles tissue regeneration Reactive Oxygen Species Hydrogels Hyaluronoglucosaminidase EC 3.2.1.35 Photosensitizing Agents
LEADER 01000caa a22002652 4500
001 NLM373109806
003 DE-627
005 20240808233126.0
007 cr uuu---uuuuu
008 240602s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202401369  |2 doi 
028 5 2 |a pubmed24n1495.xml 
035 |a (DE-627)NLM373109806 
035 |a (NLM)38822749 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Meijiao  |e verfasserin  |4 aut 
245 1 0 |a Stem Cell-Derived Nanovesicles Embedded in Dual-Layered Hydrogel for Programmed ROS Regulation and Comprehensive Tissue Regeneration in Burn Wound Healing 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2024 
500 |a Date Revised 08.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Burn wounds often bring high risks of delayed healing process and even death. Reactive oxygen species (ROS) play a crucial role in burn wound repair. However, the dynamic process in wound healing requires both the generation of ROS to inhibit bacteria and the subsequent reduction of ROS levels to initiate and promote tissue regeneration, which calls for a more intelligent ROS regulation dressing system. Hence, a dual-layered hydrogel (Dual-Gel) tailored to the process of burn wound repair is designed: the inner layer hydrogel (Gel 2) first responds to bacterial hyaluronidase (Hyal) to deliver aggregation-induced emission photosensitizer functionalized adipose-derived stem cell nanovesicles, which generate ROS upon light irradiation to eliminate bacteria; then the outer layer hydrogel (Gel 1) continuously starts a long-lasting consumption of excess ROS at the wound site to accelerate tissue regeneration. Simultaneously, the stem cell nanovesicles trapped in the burns wound also provide nutrients and mobilize neighboring tissues to thoroughly assist in inflammation regulation, cell proliferation, migration, and angiogenesis. In summary, this study develops an intelligent treatment approach on burn wounds by programmatically regulating ROS and facilitating comprehensive wound tissue repair 
650 4 |a Journal Article 
650 4 |a burn wound healing 
650 4 |a intelligent hydrogel 
650 4 |a reactive oxygen species regulation 
650 4 |a stem cell‐derived nanovesicles 
650 4 |a tissue regeneration 
650 7 |a Reactive Oxygen Species  |2 NLM 
650 7 |a Hydrogels  |2 NLM 
650 7 |a Hyaluronoglucosaminidase  |2 NLM 
650 7 |a EC 3.2.1.35  |2 NLM 
650 7 |a Photosensitizing Agents  |2 NLM 
700 1 |a Kang, Miaomiao  |e verfasserin  |4 aut 
700 1 |a Wang, Jingru  |e verfasserin  |4 aut 
700 1 |a Yang, Ronghua  |e verfasserin  |4 aut 
700 1 |a Zhong, Xiaoping  |e verfasserin  |4 aut 
700 1 |a Xie, Qihu  |e verfasserin  |4 aut 
700 1 |a Zhou, Sitong  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhijun  |e verfasserin  |4 aut 
700 1 |a Zheng, Judun  |e verfasserin  |4 aut 
700 1 |a Zhang, Yixun  |e verfasserin  |4 aut 
700 1 |a Guo, Shuang  |e verfasserin  |4 aut 
700 1 |a Lin, Weiqiang  |e verfasserin  |4 aut 
700 1 |a Huang, Jialin  |e verfasserin  |4 aut 
700 1 |a Guo, Genghong  |e verfasserin  |4 aut 
700 1 |a Fu, Yu  |e verfasserin  |4 aut 
700 1 |a Li, Bin  |e verfasserin  |4 aut 
700 1 |a Fan, Zhijin  |e verfasserin  |4 aut 
700 1 |a Li, Xipeng  |e verfasserin  |4 aut 
700 1 |a Wang, Dong  |e verfasserin  |4 aut 
700 1 |a Chen, Xu  |e verfasserin  |4 aut 
700 1 |a Tang, Ben Zhong  |e verfasserin  |4 aut 
700 1 |a Liao, Yuhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 32 vom: 31. Aug., Seite e2401369  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:32  |g day:31  |g month:08  |g pages:e2401369 
856 4 0 |u http://dx.doi.org/10.1002/adma.202401369  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 32  |b 31  |c 08  |h e2401369