Prediction of flood sensitivity based on Logistic Regression, eXtreme Gradient Boosting, and Random Forest modeling methods

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Détails bibliographiques
Publié dans:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 89(2024), 10 vom: 01. Mai, Seite 2605-2624
Auteur principal: Wu, Ying (Auteur)
Autres auteurs: Zhang, Zhiming, Qi, Xiaotian, Hu, Wenhan, Si, Shuai
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Water science and technology : a journal of the International Association on Water Pollution Research
Sujets:Journal Article Logistic Regression (LR) Random Forest (RF) eXtreme Gradient Boosting (XGBoost) flood sensitivity assessment