Prediction of flood sensitivity based on Logistic Regression, eXtreme Gradient Boosting, and Random Forest modeling methods

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 89(2024), 10 vom: 01. Mai, Seite 2605-2624
1. Verfasser: Wu, Ying (VerfasserIn)
Weitere Verfasser: Zhang, Zhiming, Qi, Xiaotian, Hu, Wenhan, Si, Shuai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Logistic Regression (LR) Random Forest (RF) eXtreme Gradient Boosting (XGBoost) flood sensitivity assessment