|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM37309731X |
003 |
DE-627 |
005 |
20250306063318.0 |
007 |
cr uuu---uuuuu |
008 |
240601s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202401392
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1242.xml
|
035 |
|
|
|a (DE-627)NLM37309731X
|
035 |
|
|
|a (NLM)38821489
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Du, Guo-Wei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a SHG Assisted Mixed-Phases Anatomizing in a Molecular Ferroelectric
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Anatomizing mixed-phases, referring to analyzing the mixing profiles and quantifying the phases' proportions in a material, which is of great significance in the genuine applications. Here, by using second-harmonic generation (SHG) polarimetry and piezoresponse force microscopy (PFM) techniques, this work elucidates the contributions and distributions of two different symmetric phases mixed in an archetype monoaxial molecular ferroelectric, diisopropylammonium chloride (DIPACl). The two competing phases are preferred in thermodynamics or kinetic process respectively, and this work evidences the switching behavior between the two competing phases facilitated by an external electrical field as opposed to a heating process. This research contributes novel insights into phase engineering in the field of molecular ferroelectrics and is poised to serve as a potent analytical tool for subsequent applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a electrical phase transition
|
650 |
|
4 |
|a mixed‐phases
|
650 |
|
4 |
|a molecular ferroelectric
|
650 |
|
4 |
|a second‐harmonic generation polarimetry
|
700 |
1 |
|
|a Cao, Xiao-Xing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Yu-An
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Zi-Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Ru-Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sha, Tai-Ting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ji, Hao-Ran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiangzhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jing, Zheng-Yin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Qiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 31 vom: 01. Aug., Seite e2401392
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:31
|g day:01
|g month:08
|g pages:e2401392
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202401392
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 31
|b 01
|c 08
|h e2401392
|