Fast Transfer of Triplet to Doublet Excitons from Organometallic Host to Organic Radical Semiconductors

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 30 vom: 31. Juli, Seite e2402790
Auteur principal: Gu, Qinying (Auteur)
Autres auteurs: Gorgon, Sebastian, Romanov, Alexander S, Li, Feng, Friend, Richard H, Evans, Emrys W
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article doublet emission exciton management organic light‐emitting diodes photophysics radical materials
LEADER 01000caa a22002652c 4500
001 NLM37307882X
003 DE-627
005 20250306063115.0
007 cr uuu---uuuuu
008 240531s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202402790  |2 doi 
028 5 2 |a pubmed25n1242.xml 
035 |a (DE-627)NLM37307882X 
035 |a (NLM)38819637 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gu, Qinying  |e verfasserin  |4 aut 
245 1 0 |a Fast Transfer of Triplet to Doublet Excitons from Organometallic Host to Organic Radical Semiconductors 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Spin triplet exciton formation sets limits on technologies using organic semiconductors that are confined to singlet-triplet photophysics. In contrast, excitations in the spin doublet manifold in organic radical semiconductors can show efficient luminescence. Here the dynamics of the spin allowed process of intermolecular energy transfer from triplet to doublet excitons are explored. A carbene-metal-amide (CMA-CF3) is employed as a model triplet donor host, since following photoexcitation it undergoes extremely fast intersystem crossing to generate a population of triplet excitons within 4 ps. This enables a foundational study for tracking energy transfer from triplets to a model radical semiconductor, TTM-3PCz. Over 74% of all radical luminescence originates from the triplet channel in this system under photoexcitation. It is found that intermolecular triplet-to-doublet energy transfer can occur directly and rapidly, with 12% of triplet excitons transferring already on sub-ns timescales. This enhanced triplet harvesting mechanism is utilized in efficient near-infrared organic light-emitting diodes, which can be extended to other opto-electronic and -spintronic technologies by radical-based spin control in molecular semiconductors 
650 4 |a Journal Article 
650 4 |a doublet emission 
650 4 |a exciton management 
650 4 |a organic light‐emitting diodes 
650 4 |a photophysics 
650 4 |a radical materials 
700 1 |a Gorgon, Sebastian  |e verfasserin  |4 aut 
700 1 |a Romanov, Alexander S  |e verfasserin  |4 aut 
700 1 |a Li, Feng  |e verfasserin  |4 aut 
700 1 |a Friend, Richard H  |e verfasserin  |4 aut 
700 1 |a Evans, Emrys W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 30 vom: 31. Juli, Seite e2402790  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:30  |g day:31  |g month:07  |g pages:e2402790 
856 4 0 |u http://dx.doi.org/10.1002/adma.202402790  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 30  |b 31  |c 07  |h e2402790