Large-Language-Model-Based AI Agent for Organic Semiconductor Device Research

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 05. Aug., Seite e2405163
1. Verfasser: Zhang, Qian (VerfasserIn)
Weitere Verfasser: Hu, Yongxu, Yan, Jiaxin, Zhang, Hengyue, Xie, Xinyi, Zhu, Jie, Li, Huchao, Niu, Xinxin, Li, Liqiang, Sun, Yajing, Hu, Wenping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article accelerated design large language models machine learning organic field‐effect transistors
LEADER 01000caa a22002652 4500
001 NLM37304285X
003 DE-627
005 20240808233121.0
007 cr uuu---uuuuu
008 240531s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202405163  |2 doi 
028 5 2 |a pubmed24n1495.xml 
035 |a (DE-627)NLM37304285X 
035 |a (NLM)38816034 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Qian  |e verfasserin  |4 aut 
245 1 0 |a Large-Language-Model-Based AI Agent for Organic Semiconductor Device Research 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Large language models (LLMs) have attracted widespread attention recently, however, their application in specialized scientific fields still requires deep adaptation. Here, an artificial intelligence (AI) agent for organic field-effect transistors (OFETs) is designed by integrating the generative pre-trained transformer 4 (GPT-4) model with well-trained machine learning (ML) algorithms. It can efficiently extract the experimental parameters of OFETs from scientific literature and reshape them into a structured database, achieving precision and recall rates both exceeding 92%. Combined with well-trained ML models, this AI agent can further provide targeted guidance and suggestions for device design. With prompt engineering and human-in-loop strategies, the agent extracts sufficient information of 709 OFETs from 277 research articles across different publishers and gathers them into a standardized database containing more than 10 000 device parameters. Using this database, a ML model based on Extreme Gradient Boosting is trained for device performance judgment. Combined with the interpretation of the high-precision model, the agent has provided a feasible optimization scheme that has tripled the charge transport properties of 2,6-diphenyldithieno[3,2-b:2',3'-d]thiophene OFETs. This work is an effective practice of LLMs in the field of organic optoelectronic devices and expands the research paradigm of organic optoelectronic materials and devices 
650 4 |a Journal Article 
650 4 |a accelerated design 
650 4 |a large language models 
650 4 |a machine learning 
650 4 |a organic field‐effect transistors 
700 1 |a Hu, Yongxu  |e verfasserin  |4 aut 
700 1 |a Yan, Jiaxin  |e verfasserin  |4 aut 
700 1 |a Zhang, Hengyue  |e verfasserin  |4 aut 
700 1 |a Xie, Xinyi  |e verfasserin  |4 aut 
700 1 |a Zhu, Jie  |e verfasserin  |4 aut 
700 1 |a Li, Huchao  |e verfasserin  |4 aut 
700 1 |a Niu, Xinxin  |e verfasserin  |4 aut 
700 1 |a Li, Liqiang  |e verfasserin  |4 aut 
700 1 |a Sun, Yajing  |e verfasserin  |4 aut 
700 1 |a Hu, Wenping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 32 vom: 05. Aug., Seite e2405163  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:32  |g day:05  |g month:08  |g pages:e2405163 
856 4 0 |u http://dx.doi.org/10.1002/adma.202405163  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 32  |b 05  |c 08  |h e2405163