|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM37304285X |
003 |
DE-627 |
005 |
20240808233121.0 |
007 |
cr uuu---uuuuu |
008 |
240531s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202405163
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1495.xml
|
035 |
|
|
|a (DE-627)NLM37304285X
|
035 |
|
|
|a (NLM)38816034
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Qian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Large-Language-Model-Based AI Agent for Organic Semiconductor Device Research
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Large language models (LLMs) have attracted widespread attention recently, however, their application in specialized scientific fields still requires deep adaptation. Here, an artificial intelligence (AI) agent for organic field-effect transistors (OFETs) is designed by integrating the generative pre-trained transformer 4 (GPT-4) model with well-trained machine learning (ML) algorithms. It can efficiently extract the experimental parameters of OFETs from scientific literature and reshape them into a structured database, achieving precision and recall rates both exceeding 92%. Combined with well-trained ML models, this AI agent can further provide targeted guidance and suggestions for device design. With prompt engineering and human-in-loop strategies, the agent extracts sufficient information of 709 OFETs from 277 research articles across different publishers and gathers them into a standardized database containing more than 10 000 device parameters. Using this database, a ML model based on Extreme Gradient Boosting is trained for device performance judgment. Combined with the interpretation of the high-precision model, the agent has provided a feasible optimization scheme that has tripled the charge transport properties of 2,6-diphenyldithieno[3,2-b:2',3'-d]thiophene OFETs. This work is an effective practice of LLMs in the field of organic optoelectronic devices and expands the research paradigm of organic optoelectronic materials and devices
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a accelerated design
|
650 |
|
4 |
|a large language models
|
650 |
|
4 |
|a machine learning
|
650 |
|
4 |
|a organic field‐effect transistors
|
700 |
1 |
|
|a Hu, Yongxu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Jiaxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Hengyue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Xinyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Huchao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Niu, Xinxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Liqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Yajing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Wenping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 32 vom: 05. Aug., Seite e2405163
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:32
|g day:05
|g month:08
|g pages:e2405163
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202405163
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 32
|b 05
|c 08
|h e2405163
|