PoseScript : Linking 3D Human Poses and Natural Language

Natural language plays a critical role in many computer vision applications, such as image captioning, visual question answering, and cross-modal retrieval, to provide fine-grained semantic information. Unfortunately, while human pose is key to human understanding, current 3D human pose datasets lac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 30. Mai
1. Verfasser: Delmas, Ginger (VerfasserIn)
Weitere Verfasser: Weinzaepfel, Philippe, Lucas, Thomas, Moreno-Noguer, Francesc, Rogez, Gregory
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373030371
003 DE-627
005 20240603233833.0
007 cr uuu---uuuuu
008 240531s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3407570  |2 doi 
028 5 2 |a pubmed24n1427.xml 
035 |a (DE-627)NLM373030371 
035 |a (NLM)38814779 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Delmas, Ginger  |e verfasserin  |4 aut 
245 1 0 |a PoseScript  |b Linking 3D Human Poses and Natural Language 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Natural language plays a critical role in many computer vision applications, such as image captioning, visual question answering, and cross-modal retrieval, to provide fine-grained semantic information. Unfortunately, while human pose is key to human understanding, current 3D human pose datasets lack detailed language descriptions. To address this issue, we have introduced the PoseScript dataset. This dataset pairs more than six thousand 3D human poses from AMASS with rich human-annotated descriptions of the body parts and their spatial relationships. Additionally, to increase the size of the dataset to a scale that is compatible with data-hungry learning algorithms, we have proposed an elaborate captioning process that generates automatic synthetic descriptions in natural language from given 3D keypoints. This process extracts low-level pose information, known as "posecodes", using a set of simple but generic rules on the 3D keypoints. These posecodes are then combined into higher level textual descriptions using syntactic rules. With automatic annotations, the amount of available data significantly scales up (100k), making it possible to effectively pretrain deep models for finetuning on human captions. To showcase the potential of annotated poses, we present three multi-modal learning tasks that utilize the PoseScript dataset. Firstly, we develop a pipeline that maps 3D poses and textual descriptions into a joint embedding space, allowing for cross-modal retrieval of relevant poses from large-scale datasets. Secondly, we establish a baseline for a text-conditioned model generating 3D poses. Thirdly, we present a learned process for generating pose descriptions. These applications demonstrate the versatility and usefulness of annotated poses in various tasks and pave the way for future research in the field. The dataset is available at https://europe.naverlabs.com/research/computer-vision/posescript/ 
650 4 |a Journal Article 
700 1 |a Weinzaepfel, Philippe  |e verfasserin  |4 aut 
700 1 |a Lucas, Thomas  |e verfasserin  |4 aut 
700 1 |a Moreno-Noguer, Francesc  |e verfasserin  |4 aut 
700 1 |a Rogez, Gregory  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 30. Mai  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:30  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3407570  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 30  |c 05