Triplet Adaptation Framework for Robust Semi-Supervised Learning

Semi-supervised learning (SSL) suffers from severe performance degradation when labeled and unlabeled data come from inconsistent and imbalanced distribution. Nonetheless, there is a lack of theoretical guidance regarding a remedy for this issue. To bridge the gap between theoretical insights and pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 01. Nov., Seite 8056-8073
1. Verfasser: Hou, Ruibing (VerfasserIn)
Weitere Verfasser: Chang, Hong, Ma, Bingpeng, Shan, Shiguang, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article