High-Quality Fusion and Visualization for MR-PET Brain Tumor Images via Multi-Dimensional Features

The fusion of magnetic resonance imaging and positron emission tomography can combine biological anatomical information and physiological metabolic information, which is of great significance for the clinical diagnosis and localization of lesions. In this paper, we propose a novel adaptive linear fu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 3550-3563
1. Verfasser: Wen, Jinyu (VerfasserIn)
Weitere Verfasser: Khan, Asad, Chen, Amei, Peng, Weilong, Fang, Meie, Philip Chen, C L, Li, Ping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373030223
003 DE-627
005 20240605232929.0
007 cr uuu---uuuuu
008 240531s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3404660  |2 doi 
028 5 2 |a pubmed24n1429.xml 
035 |a (DE-627)NLM373030223 
035 |a (NLM)38814770 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Jinyu  |e verfasserin  |4 aut 
245 1 0 |a High-Quality Fusion and Visualization for MR-PET Brain Tumor Images via Multi-Dimensional Features 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.06.2024 
500 |a Date Revised 05.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The fusion of magnetic resonance imaging and positron emission tomography can combine biological anatomical information and physiological metabolic information, which is of great significance for the clinical diagnosis and localization of lesions. In this paper, we propose a novel adaptive linear fusion method for multi-dimensional features of brain magnetic resonance and positron emission tomography images based on a convolutional neural network, termed as MdAFuse. First, in the feature extraction stage, three-dimensional feature extraction modules are constructed to extract coarse, fine, and multi-scale information features from the source image. Second, at the fusion stage, the affine mapping function of multi-dimensional features is established to maintain a constant geometric relationship between the features, which can effectively utilize structural information from a feature map to achieve a better reconstruction effect. Furthermore, our MdAFuse comprises a key feature visualization enhancement algorithm designed to observe the dynamic growth of brain lesions, which can facilitate the early diagnosis and treatment of brain tumors. Extensive experimental results demonstrate that our method is superior to existing fusion methods in terms of visual perception and nine kinds of objective image fusion metrics. Specifically, in the results of MR-PET fusion, the SSIM (Structural Similarity) and VIF (Visual Information Fidelity) metrics show improvements of 5.61% and 13.76%, respectively, compared to the current state-of-the-art algorithm. Our project is publicly available at: https://github.com/22385wjy/MdAFuse 
650 4 |a Journal Article 
700 1 |a Khan, Asad  |e verfasserin  |4 aut 
700 1 |a Chen, Amei  |e verfasserin  |4 aut 
700 1 |a Peng, Weilong  |e verfasserin  |4 aut 
700 1 |a Fang, Meie  |e verfasserin  |4 aut 
700 1 |a Philip Chen, C L  |e verfasserin  |4 aut 
700 1 |a Li, Ping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 3550-3563  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:3550-3563 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3404660  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 3550-3563