Interstitials in Thermoelectrics

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 36 vom: 01. Sept., Seite e2406009
1. Verfasser: Xu, Liqing (VerfasserIn)
Weitere Verfasser: Yin, Zhanxiang, Xiao, Yu, Zhao, Li-Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review carrier transport interstitials phonon propagation thermoelectric materials
LEADER 01000caa a22002652 4500
001 NLM373028873
003 DE-627
005 20240918232404.0
007 cr uuu---uuuuu
008 240530s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202406009  |2 doi 
028 5 2 |a pubmed24n1538.xml 
035 |a (DE-627)NLM373028873 
035 |a (NLM)38814637 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Liqing  |e verfasserin  |4 aut 
245 1 0 |a Interstitials in Thermoelectrics 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Defect structure is pivotal in advancing thermoelectric performance with interstitials being widely recognized for their remarkable roles in optimizing both phonon and electron transport properties. Diverse interstitial atoms are identified in previous works according to their distinct roles and can be classified into rattling interstitial, decoupling interstitial, interlayer interstitial, dynamic interstitial, and liquid interstitial. Specifically, rattling interstitial can cause phonon resonance in cage compound to scatter phonon transport; decoupling interstitial can contribute to phonon blocking and electron transport due to their significantly different mean free paths; interlayer interstitial can facilitate out-of-layer electron transport in layered compounds; dynamic interstitial can tune temperature-dependent carrier density and optimize electrical transport properties at wide temperatures; liquid interstitial could improve the carrier mobility at homogeneous dispersion state. All of these interstitials have positive impact on thermoelectric performance by adjusting transport parameters. This perspective therefore intends to provide a thorough overview of advances in interstitial strategy and highlight their significance for optimizing thermoelectric parameters. Finally, the profound potential for extending interstitial strategy to various other thermoelectric systems is discussed and some future directions in thermoelectric material are also outlined 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a carrier transport 
650 4 |a interstitials 
650 4 |a phonon propagation 
650 4 |a thermoelectric materials 
700 1 |a Yin, Zhanxiang  |e verfasserin  |4 aut 
700 1 |a Xiao, Yu  |e verfasserin  |4 aut 
700 1 |a Zhao, Li-Dong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 36 vom: 01. Sept., Seite e2406009  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:36  |g day:01  |g month:09  |g pages:e2406009 
856 4 0 |u http://dx.doi.org/10.1002/adma.202406009  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 36  |b 01  |c 09  |h e2406009