|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM373018614 |
003 |
DE-627 |
005 |
20240907232516.0 |
007 |
cr uuu---uuuuu |
008 |
240530s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/mrc.5453
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1526.xml
|
035 |
|
|
|a (DE-627)NLM373018614
|
035 |
|
|
|a (NLM)38813596
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Afrough, Armin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Simple MATLAB and Python scripts for multi-exponential analysis
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 06.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
|
520 |
|
|
|a Multi-exponential decay is prevalent in magnetic resonance spectroscopy, relaxation, and imaging. This paper describes simple MATLAB and Python functions and scripts for regularized multi-exponential analysis methods for 1D and 2D data and example test problems and experiments. Regularized least-squares solutions provide production-quality outputs with robust stopping rules in ~5 and ~20 lines of code for 1D and 2D inversions, respectively. The software provides an open-architecture simple solution for transforming exponential decay data to the distribution of their decay lifetimes. Examples from magnetic resonance relaxation of a complex fluid, a Danish North Sea crude oil, and fluid mixtures in porous materials-brine/crude oil mixture in North Sea reservoir chalk-are presented. Developed codes may be incorporated in other software or directly used by other researchers, in magnetic resonance relaxation, diffusion, and imaging or other physical phenomena that require multi-exponential analysis
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 1H
|
650 |
|
4 |
|a NMR
|
650 |
|
4 |
|a exponential decay
|
650 |
|
4 |
|a inverse problems
|
650 |
|
4 |
|a magnetic resonance relaxation
|
650 |
|
4 |
|a multi‐exponential analysis
|
700 |
1 |
|
|a Mokhtari, Rasoul
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feilberg, Karen L
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Magnetic resonance in chemistry : MRC
|d 1985
|g 62(2024), 10 vom: 05. Sept., Seite 698-711
|w (DE-627)NLM098179667
|x 1097-458X
|7 nnns
|
773 |
1 |
8 |
|g volume:62
|g year:2024
|g number:10
|g day:05
|g month:09
|g pages:698-711
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/mrc.5453
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 62
|j 2024
|e 10
|b 05
|c 09
|h 698-711
|